6 resultados para Schistosoma rnansoni
em Université de Lausanne, Switzerland
Resumo:
The propensity of helminths, such as schistosomes, to immunomodulate the host's immune system is an essential aspect of their survival. Previous research has demonstrated how soluble schistosomal egg antigens (SEA) dampen TLR-signaling during innate immune responses. We show here that the suppressive effect by SEA on TLR signaling is simultaneously coupled to the activation of the Nlrp3 (NLR family, pyrin domain containing 3) inflammasome and thus IL-1β production. Therefore, the responsible protein component of SEA contains the second signal that is required to trigger proteolytic pro-IL-1β processing. Moreover, the SEA component binds to the Dectin-2/FcRγ (Fc receptor γ chain) complex and activates the Syk kinase signaling pathway to induce reactive oxygen species and potassium efflux. As IL-1β has been shown to be an essential orchestrator against several pathogens we studied the in vivo consequences of Schistosoma mansoni infection in mice deficient in the central inflammasome adapter ASC and Nlrp3 molecule. These mice failed to induce local IL-1β levels in the liver and showed decreased immunopathology. Interestingly, antigen-specific Th1, Th2, and Th17 responses were down-regulated. Overall, these data imply that component(s) within SEA induce IL-1β production and unravel a crucial role of Nlrp3 during S. mansoni infection.
Resumo:
Members of the leucine-rich repeat protein family are involved in diverse functions including protein phosphatase 2-inhibition, cell cycle regulation, gene regulation and signalling pathways. A novel Schistosoma mansoni gene, called SmLANP, presenting homology to various genes coding for proteins that belong to the super family of leucine-rich repeat proteins, was characterized here. SmLANP was 1184bp in length as determined from cDNA and genomic sequences and encoded a 296 amino acid open reading frame that spanning from 6 to 894bp. The predicted amino acid sequence had a calculated molecular weight of 32kDa. Analysis of the predicted sequence indicated the presence of 3 leucine-rich domains (LRR) located in the N-terminal region and an aspartic acid rich region in the C-terminal end. SmLANP transcript is expressed in all stages of the S. mansoni life cycle analyzed, exhibiting the highest expression level in males. The SmLANP protein was expressed in a GST expression system and antibodies raised in mice against the recombinant protein. By immunolocalization assay, using adult worms, it was shown that the protein is mainly present in the cell nucleus through the whole body and strongly expressed along the tegument cell body nuclei of adult worms. As members of this family are usually involved in protein-protein interaction, a yeast two hybrid assay was conducted to identify putative binding partners for SmLANP. Thirty-six possible partners were identified, and a protein ATP synthase subunit alpha was confirmed by pull down assays, as a binding partner of the SmLANP protein.
Resumo:
OBJECTIVE: It has been suggested that Schistosoma mansoni, which is endemic in African fishing communities, might increase susceptibility to human immunodeficiency virus (HIV) acquisition. If confirmed, this would be of great public health importance in these high HIV-risk communities. This study was undertaken to determine whether S. mansoni infection is a risk factor for HIV infection among the fishing communities of Lake Victoria, Uganda. We conducted a matched case-control study, nested within a prospective HIV incidence cohort, including 50 HIV seroconverters (cases) and 150 controls during 2009-2011. METHODS: S. mansoni infection prior to HIV seroconversion was determined by measuring serum circulating anodic antigen (CAA) in stored serum. HIV testing was carried out using the Determine rapid test and infection confirmed by enzyme-linked immunosorbent assays. RESULTS: About 49% of cases and 52% of controls had S. mansoni infection prior to HIV seroconversion (or at the time of a similar study visit, for controls): odds ratio, adjusting for ethnicity, religion, marital status, education, occupation, frequency of alcohol consumption in previous 3 months, number of sexual partners while drunk, duration of stay in the community, and history of schistosomiasis treatment in the past 2 years was 1.23 (95% CI 0.3-5.7) P = 0.79. S. mansoni infections were chronic (with little change in status between enrolment and HIV seroconversion), and there was no difference in median CAA concentration between cases and controls. CONCLUSIONS: These results do not support the hypothesis that S. mansoni infection promotes HIV acquisition.
Resumo:
Les schistosomiases sont des maladies parasitaires causées par des helminthes du genre Schistosoma (S.) qui touchent 200 millions de personnes dans le monde, mais restent rares chez le voyageur. Contrairement à S. heamatobium, agent de la bilharziose urinaire, S. mansoni, présent en Afrique subsaharienne, en Egypte ainsi qu'aux Antilles, au Surinam et dans le nordest du Brésil, est responsable des formes hépato-intestinales de la maladie. Les larves, vivant en eaux douces contaminées par des selles infectées, peuvent pénétrer la peau des baigneurs sans que l'individu ne s'en rende compte. Les parasites adultes s'établissent dans le système veineux digestif où ils se reproduisent et excrètent des oeufs qui migreront dans la lumière intestinale. Cette revue systématique évalue les effets des médicaments antibilharziens, utilisés seuls ou en association, pour traiter l'infection à S. mansoni.
Resumo:
Mucosal surfaces represent the main sites of interaction with environmental microorganisms and antigens. Sentinel cells, including epithelial cells and dendritic cells (DCs), continuously sense the environment and coordinate defenses for the protection of mucosal tissues. DCs play a central role in the control of adaptive immune responses owing to their capacity to internalize foreign materials, to migrate into lymph nodes and to present antigens to naive lymphocytes. Some pathogenic microorganisms trigger epithelial responses that result in the recruitment of DCs. These pathogens hijack the recruited DCs to enable them to infect the host, escape the host's defense mechanisms and establish niches at remote sites.