3 resultados para Sawmills

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An assessment of wood workers' exposure to airborne cultivable bacteria, fungi, inhalable endotoxins and inhalable organic dust was performed at 12 sawmills that process mainly coniferous wood species. In each plant, samples were collected at four or five different work sites (debarking, sawing, sorting, planing and sawing cockpit) and the efficiency of sampling devices (impinger or filter) for determining endotoxins levels was evaluated. Results show that fungi are present in very high concentrations (up to 35 000 CFU m(-3)) in all sawmills. We also find that there are more bioaerosols at the sorting work site (mean +/- SD: 7723 +/- 9919 CFU m(-3) for total bacteria, 614 +/- 902 CFU m(-3) for Gram-negative, 19 438 +/- 14 246 CFU m(-3) for fungi, 7.0 +/- 9.0 EU m(-3) for endotoxin and 2.9 +/- 4.8 g m(-3) for dust) than at the sawing station (mean +/- SD: 1938 +/- 2478 CFU m(-3) for total bacteria, 141 +/- 206 CFU m(-3) for Gram-negative, 12 207 +/- 10 008 CFU m(-3) for fungi, 2.1 +/- 1.9 EU m(-3) for endotoxin and 0.75 +/- 0.49 mg m(-3) for dust). At the same time, the species composition and concentration of airborne Gram-negative bacteria were studied. Penicillinium sp. were the predominant fungi, while Bacillus sp. and the Pseudomonadacea family were the predominant Gram-positive and Gram-negative bacteria encountered, respectively. [Authors]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Exposure to bioaerosols in the occupational environment of sawmills could be associated with a wide range of health effects, in particular respiratory impairment, allergy and organic dust toxic syndrome. The objective of the study was to assess the frequency of medical respiratory and general symptoms and their relation to bioaerosol exposure. Method Twelve sawmills in the French part of Switzerland were investigated and the relationship between levels of bioaerosols (wood dust, airborne bacteria, airborne fungi and endotoxins), medical symptoms and impaired lung function was explored. A health questionnaire was distributed to 111 sawmill workers. Results The concentration of airborne fungi exceeded the limit recommended by the Swiss National Insurance (SUVA) in the twelve sawmills. This elevated fungi level significantly influenced the occurrence of bronchial syndrome (defined by cough and expectorations). No other health effects (irritations or respiratory effects) could be associated to the measured exposures. We observed that junior workers showed significantly more irritation syndrome (defined by itching/running nose, snoring and itching/red eyes) than senior workers. Lung function tests were not influenced by bioaerosol levels nor dust exposure levels. Conclusion Results suggest that occupational exposure to wood dust in a Swiss sawmill does not promote a clinically relevant decline in lung function. However, the occurrence of bronchial syndrome is strongly influenced by airborne fungi levels. [Authors]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Occupational exposures to fungi are very frequent and are known to cause chronic or acute symptoms. To better assess health risks related to fungal exposure, it is crucial to characterize precisely the airborne fungal community in terms of quantity and composition. The objective of this chapter is to synthesize existing knowledge of airborne fungal contamination in various occupational settings. We analyzed 134 papers published between 2000 and 2014 focusing on five different work sectors considered as highly contaminated (i.e., more than 1000 fungal particles/m3): animal confinement buildings, sawmills, waste handling, the food industry, and grain/plant handling. Results show that harvesting grain, washing cheese, and handling salami seem to be the occupational situations with the worst potential for exposure. Moreover, a lack of standardized sampling and analysis methods among countries and even within the same country is highlighted. Occupational exposure limit values do not exist. Recommendations and guidelines based on culture-dependent methods, which are now recognized to underestimate true concentrations, are proposed. Those recommendations are frequently exceeded and protective measures are not always easy to implement.