208 resultados para Savoy Alps (France)

em Université de Lausanne, Switzerland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three types of garnet have been distinguished in pelitic schists from an epidote-blueschist-facies unit of the Ambin and South Vanoise Brianconnais massifs on the basis of texture, chemical zoning and mineral inclusion characterization. Type-1 garnet cores with high Mn/Ca ratios are interpreted as pre-Alpine relicts, whereas Type-1 garnet rims, Type-2 inclusion-rich porphyroblasts and smaller Type-3 garnets are Alpine. The latter are all characterized by low Mn/Ca ratios and a coexisting mineral assemblage of blue amphibole, high-Si phengite, epidote and quartz. Prograde growth conditions during Alpine D-1 high-pressure (HP) metamorphism are recorded by a decrease in Mn and increase in Fe (+/-Ca) in the Type-2 garnets, culminating in peak P-T conditions of 14-16 kbar and 500degreesC in the deepest parts of the Ambin dome. The multistage growth history of Type-1 garnets indicates a polymetamorphic history for the Ambin and South Vanoise massifs; unfortunately, no age constraints are available. The new metamorphic constraints on the Alpine event in the massifs define a metamorphic T `gap' between them and their surrounding cover (Brianconnais and upper Schistes Lustres units), which experienced metamorphism only in the stability field of carpholite-lawsonite (T < 400degreesC). These data and supporting structural studies confirm that the Ambin and South Vanoise massifs are slices of `eclogitized' continental crust tectonically extruded within the Schistes Lustres units and Brianconnais covers. The corresponding tectonic contacts with top-to-east movement are responsible for the juxtaposition of lower-grade metamorphic units on the Ambin and South Vanoise massifs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The upper part of three deep seismic lines running across the Penninic Swiss Alps of Valais have been studied. Numerous reflectors illustrate the nappe structure of this internal part of the orogen. These reflectors, even at great depths (20-25 km), can be correlated with outcropping geological features and are most likely produced by lithological boundaries rather than by mylonites zones, which are hardly reflective in such an environment. Our interpretations, largely constrained by projections of the outcropping geology, have improved our knowledge of the deep structure of this segment of the Alpine belt, enhancing the importance of the backfolding and the crustal scale deformation phase which produced the Rawil-Valpelline depression and the Aar-Toce culmination. Furthermore we have here the possibility of correlating seismic patterns produced by ductile folds with the outcropping structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ophiolites occur at several places in the Lower Penninic of the W and Central Alps. They are generally ascribed to oceanic crust of a so-called ``Valais ocean'' of Cretaceous age which plays a fundamental role in many models of Alpine paleogeography and geodynamics. The type locality and only observational base for the definition of a ``Valais ocean'' in the W Alps is the Versoyen ophiolitic complex, on the French-Italian boundary W of the Petit St-Bernard col. The idea of a "Valais ocean'' is based on two propositions that are since 40 years the basis for most reconstructions of the Lower Penninic: (1) The Versoyen forms the (overturned) stratigraphic base of the Cretaceous-Tertiary Valais-Tarentaise series; and (2) it has a Cretaceous age. We present new field and isotopic data that severely challenge both propositions. (1) The base of the Versoyen ophiolite is a thrust. It overlies a wildflysch with blocks of Versoyen rocks, named the Mechandeur Formation. This ``supra-Tarentaise'' wildflysch has been confused with an (overturned) stratigraphic transition from the Versoyen to the Valais-Tarentaise series. Thus the contact Versoyen/Tarentaise is not stratigraphic but tectonic, and the Versoyen ophiolite has no link with the Valais basin. This thrust corresponds to an inverse metamorphic discontinuity and to an abrupt change in tectonic style. (2) The contact of the Versoyen complex with the overlying Triassic-Jurassic Petit St-Bernard (PSB) series is stratigraphic (and not tectonic as admitted by all authors since 50 years). Several types of sedimentary structures polarize it and show that the PSB series is younger than the Versoyen. Consequently the Versoyen ophiolitic complex is Paleozoic and forms the basement of the PSB Mesozoic sediments. They both belong to a single tectonic unit, named the Versoyen-Petit St-Bernard nappe. (3) Ion microprobe U-Pb isotopic data on zircons from the main gabbroic intrusion in the Versoyen complex give a crystallization age of 337.0 +/- 4.1 Ma (Visean, Early Carboniferous). These zircons show typical oscillatory zoning and no overgrowth or corrosion. and are interpreted to date the Versoyen magmatism. These U-Pb data are in excellent agreement with our field observations and confirm the Paleozoic age of the Versoyen ophiolite. The existence of a ``Valais ocean'' of Cretaceous age in the W Alps becomes very improbable. The eclogite facies metamorphism of the Versoyen-Petit St-Bernard nappe results from an Alpine intra-continental subduction, guided by a Paleozoic oceanic suture. This is an example of the lone term influence of inherited deep-seated structures on a Much younger orogeny. This might well be a major cause of of the inherent complexity of the Alps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Located at the internal border of the Grand-Saint-Bernard Zone, the diorite and its aureole lie on top of intensively studied Alpine eclogitic units but this pluton, poorly studied yet, has kept locally almost undeformed. The pluton intruded, at similar to 360 Ma, country-rocks mostly composed of dark shales with Na2O > K2O and minor mafic intercalations of tholeiitic basalt affinity. This association is characteristic of the Vanoise (France) basement series, where available age determinations suggest an Early Paleozoic age. Parts of the pluton, and of its hornfels aureole that is evidenced here for the first time, in the Punta Bioula section of Valsavaranche valley (NW-Italy), have been well-preserved from the Alpine deformation. Syn-emplacement hardening, dehydration-induced, probably prevented strain-enhanced Alpine recrystallization. Magmatic rock-types range continuously from subordinate mafic types at SiO2 similar to 48%, of hornblendite with cumulative or appinite affinities, to the main body of quartz diorite to quartz monzonite (SiO2 up to 62%). P-T estimates for the pluton emplacement, based on the abundance of garnet in the hornfelses, using also zircon and apatite saturation thermometry and Al-in-hornblende barometry, suggest T similar to 800-950 degrees C and minimum P in the 0.2-0.5 GPa range, with records of higher pressure conditions (up to 1-2 GPa?) in hornblendite phlogopite-cored amphibole. The high-K, Na > K, calcalkaline geochemistry is in line with a destructive plate-margin setting. Based on major element data and radiogenic isotope signature (epsilon Nd-360 Ma from -1.2 to + 0.9, Sr-87/Sr-86(360 MA) from 0.7054 to 0.7063), the parental magmas are interpreted in terms of deep-seated metabasaltic partial melts with limited contamination from shallower sources, the low radiogenic Nd-content excluding a major contribution from Vanoise tholeiites. There is no other preserved evidence for Variscan magmatism of similar age and composition in the Western Alps, but probable analogs are known in the western and northern parts of French Massif Central. Regarding the Alpine tectonics, not only the age of the pluton and its host-rocks (instead of the Permo-Carboniferous age previously believed), but also its upper mylonitic contact, suggest revisions of the Alpine nappe model. The Cogne diorite allegedly constituted the axial part of the E-verging ``pli en retour [backfold] du Valsavaranche'', a cornerstone of popular Alpine structural models: in fact, the alleged fold limbs, as attested here by field and geochemical data, do not belong to the same unit, and the backfold hypothesis is unfounded. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forty-two new apatite and zircon fission track ages are presented for samples from the Western Alps in southern Switzerland, northern Italy, and southeastern France. Measured ages plotted against assumed closure temperatures yield cooling patterns for the final cooling, uplift, and exhumation of the Western Alps. Similar fission track zircon ages in the Penninic Gran Paradiso massif, Dent Blanche nappe, Sesia-Lanzo Zone, and Ivrea Zone indicate cooling of all four units to approximately 225-degrees-C by 33 Ma. Differences in apatite ages reveal differential cooling of the four blocks between 33 Ma and the present. In the Sesia-Lanzo Zone, similarity of apatite ages regardless of elevation, together with near-volcanic confined fission track length patterns suggest rapid cooling and uplift at approximately 25 Ma compared with slow cooling of other Western Alps units around 12 Ma. Uplift is thus not continuous but episodic, often over a short time interval beyond the resolution of other methods. Such episodes of uplift, as revealed here in the Sesia-Lanzo Zone, may be the rule rather than the exception.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sampling of an industrial drill string from the northeastern Paris Basin (Montcornet, France) provides early Jurassic magnetostratigraphic data coupled with biochronological control. About 375 paleomagnetic samples were obtained from a 145 m thick series of Pliensbachian rocks. A composite demagnetization thermal up to 300 C and an alternating field up to 80 mT were used to separate the magnetic components. A low unblocking temperature component (<250degreesC) with an inclination of about 64 is interpreted as a present-day field overprint. The characteristic remanent component with both normal and reversed antipodal directions was isolated between 5 and 50 mT. Twenty-nine polarity intervals were recognized. Correlation of these new results from the Paris Basin with data from the Breggia Gorge section (Ticino, southern Alps, Switzerland), which is generally considered as the reference section for Pliensbachian magnetostratigraphy, reveals almost identical patterns of magnetic polarity reversals. However, the correlation implies significant paleontological age discrepancies. Revised age assignments of biostratigraphic data of Breggia as well as an objective evaluation of the uncertainties on zonal boundaries in both Breggia and Moncornet resolve the initial discrepancies between magnetostratigraphic correlations and biostratigraphic ages. Hence, the sequence of magnetic reversals is significantly strengthened and the age calibration is notably improved for the Pliensbachian, a stage for which sections combining adequate magnetic signal and biostratigraphic constraints are still very few. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lamprophyre dykes have been recently discovered in blocks of gneiss embedded in a calcschist formation of wildflysch type that forms the top of the Mesozoic-Tertiary metasedimentary cover of the Antigorio nappe (the Teggiolo zone) in the Val Bavona (Lower Penninic, NW Ticino, Switzerland). The presence of the lamprophyres gives a clue to the possible source of these blocks. Similar dykes occur in the N part of the Maggia nappe where they are intruded into the Matorello granite and the surrounding gneisses. We studied these lamprophyres at two localities in the Teggiolo zone (Tamierpass and Lago del Zott) and at one locality in the Maggia nappe (Laghetti). Detailed mineralogical and geochemical investigations confirm their great similarity, particularly between the Tamier and Laghetti dykes. They all recrystallized during Alpine metamorphism under amphibolite facies conditions and lost their primary mineral assemblages and textures. The chemistry reveals a calc-alkaline affinity, a limited differentiation range, features of mineral accumulation and intense remobilization in some cases. The lamprophyres are characterized by a high mg# and relatively low contents in REE and other incompatible elements. In situ SHRIMP and LA-ICPMS U-Pb zircon dating yielded ages of 284.8 +/- 1.7 Ma (Tamier), 290.0 +/- 1.3 Ma (Zott) and 290.5 +/- 3.7 Ma (Laghetti). These ages are compatible with the general late- to post-Variscan magmatic evolution of the Helvetic and Lower Penninic domains. The lamprophyres are considered as melts derived from the lithospheric Variscan mantle, variously hybridized and differentiated at the contact with crustal material during late- to post-orogenic extension. These lamprophyres are chemically distinct from earlier lamprophyres of Visean age, emplaced together with their associated granites in transcurrent fault zones during the Variscan orogenic compression. The similarity of these different dykes suggests that the front of the Maggia nappe is a likely source of the gneissic blocks embedded in the calcschists at the top of the Teggiolo zone. They would have been provided by the advancing Maggia nappe during its thrusting over the Antigorio nappe and simultaneous closure of the Teggiolo sedimentary basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A total of 108 Apodemus skulls from Switzerland, Austria, Italy, France and Germany was studied to determine morphological characteristics useful in identifying individuals as Apodemus sylvaticus (Linnaeus, 1758), A. flavicollis (Melchior, 1834) or A. alpicola Heinrich, 1952. The original assignment of the samples to the three species was based on molar cusp morphology, body proportions, pelage coloration, and allozyme analysis. The 24 measured cranial characters used together accurately discriminated between the three species and correctly classified 100% of the individuals to species. A stepwise discriminant function analysis showed that 6 cranial characters are sufficient to differentiate between the three species, with a correct classification above 97%. Fisher's linear discriminant function coefficients can be used directly for classification of unknown specimens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wolves in Italy strongly declined in the past and were confined south of the Alps since the turn of the last century, reduced in the 1970s to approximately 100 individuals surviving in two fragmented subpopulations in the central-southern Apennines. The Italian wolves are presently expanding in the Apennines, and started to recolonize the western Alps in Italy, France and Switzerland about 16 years ago. In this study, we used a population genetic approach to elucidate some aspects of the wolf recolonization process. DNA extracted from 3068 tissue and scat samples collected in the Apennines (the source populations) and in the Alps (the colony), were genotyped at 12 microsatellite loci aiming to assess (i) the strength of the bottleneck and founder effects during the onset of colonization; (ii) the rates of gene flow between source and colony; and (iii) the minimum number of colonizers that are needed to explain the genetic variability observed in the colony. We identified a total of 435 distinct wolf genotypes, which showed that wolves in the Alps: (i) have significantly lower genetic diversity (heterozygosity, allelic richness, number of private alleles) than wolves in the Apennines; (ii) are genetically distinct using pairwise F(ST) values, population assignment test and Bayesian clustering; (iii) are not in genetic equilibrium (significant bottleneck test). Spatial autocorrelations are significant among samples separated up to c. 230 km, roughly correspondent to the apparent gap in permanent wolf presence between the Alps and north Apennines. The estimated number of first-generation migrants indicates that migration has been unidirectional and male-biased, from the Apennines to the Alps, and that wolves in southern Italy did not contribute to the Alpine population. These results suggest that: (i) the Alps were colonized by a few long-range migrating wolves originating in the north Apennine subpopulation; (ii) during the colonization process there has been a moderate bottleneck; and (iii) gene flow between sources and colonies was moderate (corresponding to 1.25-2.50 wolves per generation), despite high potential for dispersal. Bottleneck simulations showed that a total of c. 8-16 effective founders are needed to explain the genetic diversity observed in the Alps. Levels of genetic diversity in the expanding Alpine wolf population, and the permanence of genetic structuring, will depend on the future rates of gene flow among distinct wolf subpopulation fragments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Debris flows are among the most dangerous processes in mountainous areas due to their rapid rate of movement and long runout zone. Sudden and rather unexpected impacts produce not only damages to buildings and infrastructure but also threaten human lives. Medium- to regional-scale susceptibility analyses allow the identification of the most endangered areas and suggest where further detailed studies have to be carried out. Since data availability for larger regions is mostly the key limiting factor, empirical models with low data requirements are suitable for first overviews. In this study a susceptibility analysis was carried out for the Barcelonnette Basin, situated in the southern French Alps. By means of a methodology based on empirical rules for source identification and the empirical angle of reach concept for the 2-D runout computation, a worst-case scenario was first modelled. In a second step, scenarios for high, medium and low frequency events were developed. A comparison with the footprints of a few mapped events indicates reasonable results but suggests a high dependency on the quality of the digital elevation model. This fact emphasises the need for a careful interpretation of the results while remaining conscious of the inherent assumptions of the model used and quality of the input data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the early 1900s, the wolf (Canis lupus) was extirpated from France and Switzerland. There is growing evidence that the species is presently recolonizing these countries in the western Alps. By sequencing the mitochondrial DNA (mtDNA) control region of various samples mainly collected in the field (scats, hairs, regurgitates, blood or tissue; n = 292), we could (1) develop a non-invasive method enabling the unambiguous attribution of these samples to wolf, fox (Vulpes vulpes) or dog (Canis familiaris), among others; (2) demonstrate that Italian, French and Swiss wolves share the same mtDNA haplotype, a haplotype that has never been found in any other wolf population world-wide. Combined together, field and genetic data collected over 10 years corroborate the scenario of a natural expansion of wolves from the Italian source population. Furthermore, such a genetic approach is of conservation significance, since it has important consequences for management decisions. This first long-term report using non-invasive sampling demonstrates that long-distance dispersers are common, supporting the hypothesis that individuals may often attempt to colonize far from their native pack, even in the absence of suitable corridors across habitats characterized by intense human activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationships between stratigraphic and tectonic setting, recharge processes and underground drainage of the glacierised karst aquifer system `Tsanfleuron-Sanetsch' in the Swiss Alps have been studied by means of various methods, particularly tracer tests (19 injections). The area belongs to the Helvetic nappes and consists of Jurassic to Palaeogene sedimentary rocks. Strata are folded and form a regional anticlinorium. Cretaceous Urgonian limestone constitutes the main karst aquifer, overlain by a retreating glacier in its upper part. Polished limestone surfaces are exposed between the glacier front and the end moraine of 1855/1860 (Little Ice Age); typical alpine karrenfields can be observed further below. Results show that (1) large parts of the area are drained by the Glarey spring, which is used as a drinking water source, while marginal parts belong to the catchments of other springs; (2) groundwater flow towards the Glarey spring occurs in the main aquifer, parallel to stratification, while flow towards another spring crosses the entire stratigraphic sequence, consisting of about 800 m of marl and limestone, along deep faults that were probably enlarged by mass movements; (3) the variability of glacial meltwater production influences the shape of the tracer breakthrough curves and, consequently, flow and transport in the aquifer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the Pleistocene glaciations, the Alps were an efficient barrier to gene flow between isolated populations, often leading to allopatric speciation. Afterwards, the Alps strongly influenced the post-glacial recolonization of Europe and represent a major suture zone between differentiated populations. Two hybrid zones in the Swiss and French Alps between genetically and chromosomally well-differentiated species-the Valais shrew, Sorex antinorii, and the common shrew, S. araneus-were studied karyotypically and by analyzing the distribution of seven microsatellite loci. In the center of the Haslital hybrid zone the two species coexist over a distance of 900 m. Hybrid karyotypes, among them the most complex known in Sorex, are rare. F-statistics based on microsatellite data revealed a strong heterozygote deficit only in the center of the zone, due to the sympatric distribution of the two species with little hybridization between them. Structuring within the species (both F(IS) and F(ST)) was low. An hierarchical analysis showed a high level of interspecific differentiation. Results were compared with those previously reported in another hybrid zone located at Les Houches in the French Alps. Genetic structuring within and between species was comparable in both hybrid zones, although chromosomal incompatibilities are more important in Haslital, where a linkage block of the race-specific chromosomes should additionally impede gene flow. Evidence for a more restricted gene flow in Haslital comes from the genetically intermediate hybrid karyotypes, whereas in Les Houches, hybrid karyotypes are genetically identical to individuals of the pure karyotypic races. Genic and chromosomal introgression was observed in Les Houches, but not in Haslital. The possible influence of a river, separating the two species at Les Houches, on gene flow is discussed.