2 resultados para Sativa
em Université de Lausanne, Switzerland
Resumo:
We assessed the effect of abandonment of sylvo-pastoral practices in chestnut orchards (Castanea sativa) on bats in southern Switzerland to determine practical recommendations for bat conservation. We compared bat species richness and foraging activities between traditionally managed and unmanaged chestnut orchards, testing the hypothesis that managed orchards provide better foraging opportunities and harbour more bat species. Echolocation calls of foraging bats were sampled simultaneously at paired sites of managed and unmanaged orchards using custom made recorders. Vegetation structure and aerial insect availability were sampled at the recording sites and used as explanatory variables in the model. In a paired sampling design, we found twice the number of bat species (12) and five times higher total foraging activity in the managed chestnut orchards compared to the unmanaged ones. Bat species with low flight manoeuvrability were 14 times more common in managed orchards, whereas bats with medium to high manoeuvrability were only 5 times more common than in abandoned orchards. The vegetation structure was less dense in managed orchards. However, management did not affect relative insect abundance. Bats primarily visited the most open orchards, free of undergrowth. As a result of restricted access into the overgrown forests, the abandonment of chestnut orchards leads to a decline in bat species richness and foraging activities. Continued management of chestnut orchards to maintain an open structure is important for the conservation of endangered bat species in the southern Swiss Alps.
Resumo:
Inorganic phosphate (Pi) is one of the most limiting nutrients for plant growth in both natural and agricultural contexts. Pi-deficiency leads to a strong decrease in shoot growth, and triggers extensive changes at the developmental, biochemical and gene expression levels that are presumably aimed at improving the acquisition of this nutrient and sustaining growth. The Arabidopsis thaliana PHO1 gene has previously been shown to participate in the transport of Pi from roots to shoots, and the null pho1 mutant has all the hallmarks associated with shoot Pi deficiency. We show here that A. thaliana plants with a reduced expression of PHO1 in roots have shoot growth similar to Pi-sufficient plants, despite leaves being strongly Pi deficient. Furthermore, the gene expression profile normally triggered by Pi deficiency is suppressed in plants with low PHO1 expression. At comparable levels of shoot Pi supply, the wild type reduces shoot growth but maintains adequate shoot vacuolar Pi content, whereas the PHO1 underexpressor maintains maximal growth with strongly depleted Pi reserves. Expression of the Oryza sativa (rice) PHO1 ortholog in the pho1 null mutant also leads to plants that maintain normal growth and suppression of the Pi-deficiency response, despite the low shoot Pi. These data show that it is possible to unlink low shoot Pi content with the responses normally associated with Pi deficiency through the modulation of PHO1 expression or activity. These data also show that reduced shoot growth is not a direct consequence of Pi deficiency, but is more likely to be a result of extensive gene expression reprogramming triggered by Pi deficiency.