24 resultados para Sander, Klarika: Löytöretki Suomeen
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: Investigation of the incidence and distribution of congenital structural cardiac malformations among the offspring of mothers with diabetes type 1 and of the influence of periconceptional glycemic control. METHODS: Multicenter retrospective clinical study, literature review, and meta-analysis. The incidence and pattern of congenital heart disease in the own study population and in the literature on the offspring of type 1 diabetic mothers were compared with the incidence and spectrum of the various cardiovascular defects in the offspring of nondiabetic mothers as registered by EUROCAT Northern Netherlands. Medical records were, in addition, reviewed for HbA(1c) during the 1st trimester. RESULTS: The distribution of congenital heart anomalies in the own diabetic study population was in accordance with the distribution encountered in the literature. This distribution differed considerably from that in the nondiabetic population. Approximately half the cardiovascular defects were conotruncal anomalies. The authors' study demonstrated a remarkable increase in the likelihood of visceral heterotaxia and variants of single ventricle among these patients. As expected, elevated HbA(1c) values during the 1st trimester were associated with offspring fetal cardiovascular defects. CONCLUSION: This study shows an increased likelihood of specific heart anomalies, namely transposition of the great arteries, persistent truncus arteriosus, visceral heterotaxia and single ventricle, among offspring of diabetic mothers. This suggests a profound teratogenic effect at a very early stage in cardiogenesis. The study emphasizes the frequency with which the offspring of diabetes-complicated pregnancies suffer from complex forms of congenital heart disease. Pregnancies with poor 1st-trimester glycemic control are more prone to the presence of fetal heart disease.
Resumo:
Background: Acrylates and methacrylates (salts and esters of acrylic and metacrylic acid respectively), are monomers commonly found in polymer plastics, resins and glues, and are widely used in many industry sectors. The first adverse health effects described were skin reactions and asthma. Exposure to acrylates, for instance when using multicomponent glues, is now a well known cause of occupational asthma. Methods: We report the case of a rhinitis - and possible asthma - to acrylates, in a 38-year-old woman, working in a nail beauty salon. She was currently treated for hypertension, and otherwise known for obesity and seasonal rhinoconjunctivitis, but did not have any respiratory problem. Two years after starting this activity, she progressively started to complain of anosmia, rhinitis, and intermittent dyspnea. Her job consisted in decorating nails with a mixture of a polymer powder and a liquid monomer, after removing the previous artificial nail with a small sander. We assessed exposure to acrylates at her working place, both as dust (from sanded nails) and volatile compound (from the mixture described above), and she was asked to measure her peak flow values twice a day for ten days, in order to detect a possible relationship between her occupational activities, the symptoms and the peak flow values. Results: Measures made during the visit of the patient's place of work showed that the existing aspiration system was efficient for eliminating the dust produced by nail sanding, but not for eliminating the volatile components. Thus, occupational exposure to acrylates was demonstrated. Moreover, the peak flow measures showed an average decrease of almost 10 percent when the patient was at work, compared to when she stayed home. We concluded that she actually suffered from professional rhinitis and, possibly, professional asthma (not certain because of the limited number of peak flow measures per day). Conclusion: Although exposure to acrylates is a well known cause of occupational asthma, it should be emphasized that the exact mechanisms of action remain unknown, despite the abundant literature about it. Some professions, which tend to be more frequent nowadays (such as working in a nail beauty salon), can expose the worker to particular risks. This highlights the need of always inquiring not only about the profession, but also the related activities, when facing a case of suspected asthma.
Resumo:
Acute cardiovascular dysfunction occurs perioperatively in more than 20% of cardiosurgical patients, yet current acute heart failure (HF) classification is not applicable to this period. Indicators of major perioperative risk include unstable coronary syndromes, decompensated HF, significant arrhythmias and valvular disease. Clinical risk factors include history of heart disease, compensated HF, cerebrovascular disease, presence of diabetes mellitus, renal insufficiency and high-risk surgery. EuroSCORE reliably predicts perioperative cardiovascular alteration in patients aged less than 80 years. Preoperative B-type natriuretic peptide level is an additional risk stratification factor. Aggressively preserving heart function during cardiosurgery is a major goal. Volatile anaesthetics and levosimendan seem to be promising cardioprotective agents, but large trials are still needed to assess the best cardioprotective agent(s) and optimal protocol(s). The aim of monitoring is early detection and assessment of mechanisms of perioperative cardiovascular dysfunction. Ideally, volume status should be assessed by 'dynamic' measurement of haemodynamic parameters. Assess heart function first by echocardiography, then using a pulmonary artery catheter (especially in right heart dysfunction). If volaemia and heart function are in the normal range, cardiovascular dysfunction is very likely related to vascular dysfunction. In treating myocardial dysfunction, consider the following options, either alone or in combination: low-to-moderate doses of dobutamine and epinephrine, milrinone or levosimendan. In vasoplegia-induced hypotension, use norepinephrine to maintain adequate perfusion pressure. Exclude hypovolaemia in patients under vasopressors, through repeated volume assessments. Optimal perioperative use of inotropes/vasopressors in cardiosurgery remains controversial, and further large multinational studies are needed. Cardiosurgical perioperative classification of cardiac impairment should be based on time of occurrence (precardiotomy, failure to wean, postcardiotomy) and haemodynamic severity of the patient's condition (crash and burn, deteriorating fast, stable but inotrope dependent). In heart dysfunction with suspected coronary hypoperfusion, an intra-aortic balloon pump is highly recommended. A ventricular assist device should be considered before end organ dysfunction becomes evident. Extra-corporeal membrane oxygenation is an elegant solution as a bridge to recovery and/or decision making. This paper offers practical recommendations for management of perioperative HF in cardiosurgery based on European experts' opinion. It also emphasizes the need for large surveys and studies to assess the optimal way to manage perioperative HF in cardiac surgery.
Resumo:
Occupational exposures to wood dust have been associated with an elevated risk of sinonasal cancer (SNC). Wood dust is recognized as a human carcinogen but the specific cancer causative agent remains unknown. One possible explanation is a co-exposure to; wood dust and polycyclic aromatic hydrocarbons (PAHs). PAHs could be generated during incomplete combustion of wood due to heat created by use of power tools. To determine if PAHs are generated from wood during common wood working operations, PAH concentrations in wood dust samples collected in an experimental chamber operated under controlled conditions were analyzed. In addition, personal air samples from workers exposed to wood dust (n = 30) were collected. Wood dust was generated using three different power tools: vibrating sander, belt sander, and saw; and six wood materials: fir, Medium Density Fiberboard (MDF), beech, mahogany, oak and wood melamine. Monitoring of wood workers was carried out by means of personal sampler device during wood working operations. We measured 21 PAH concentrations in wood dust samples by capillary gas chromatography-ion trap mass spectrometry (GC-MS). Total PAH concentrations in wood dust varied greatly (0.24-7.95 ppm) with the lowest being in MDF dust and the highest in wood melamine dust. Personal PAH exposures were between 37.5-119.8 ng m(-3) during wood working operations. Our results suggest that PAH exposures are present during woodworking operations and hence could play a role in the mechanism of cancer induction related to wood dust exposure.
Resumo:
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.
Resumo:
BACKGROUND: The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim of this study was to examine how age and in vivo measured lens transmission of blue light might affect pupil light responses, in particular, mediated by the ipRGC. METHODS: Consensual pupil responses were explored in 44 healthy subjects aged between 26 and 68 years. A pupil response was recorded to a continuous 20 s light stimulus of 660 nm (red) or 470 nm (blue) both at 300 cd/m2 intensity (14.9 and 14.8 log photons/cm2/s, respectively). Additional recordings were performed using four 470 nm stimulus intensities of 3, 30, 100 and 300 cd/m2. The baseline pupil size was measured in darkness and results were adjusted for the baseline pupil and gender. The main outcome parameters were maximal and sustained pupil contraction amplitudes and the postillumination response assessed as area under the curve (AUC) over two time-windows: early (0-10 s after light termination) and late (10-30 s after light termination). Lens transmission was measured with an ocular fluorometer. RESULTS: The sustained pupil contraction and the early poststimulus AUC correlated positively with age (p=0.02, p=0.0014, respectively) for the blue light stimulus condition only.The maximal pupil contraction amplitude did not correlate to age either for bright blue or red light stimulus conditions.Lens transmission decreased linearly with age (p<0.0001). The pupil response was stable or increased with decreasing transmission, though only significantly for the early poststimulus AUC to 300 cd/m2 light (p=0.02). CONCLUSIONS: Age did not reduce, but rather enhance pupil responses mediated by ipRGC. The age related decrease of blue light transmission led to similar results, however, the effect of age was greater on these pupil responses than that of the lens transmission. Thus there must be other age related factors such as lens scatter and/or adaptive processes influencing the ipRGC mediated pupil response enhancement observed with advancing age.
Resumo:
The programmed death 1 (PD-1) receptor is a negative regulator of activated T cells and is up-regulated on exhausted virus-specific CD8(+) T cells in chronically infected mice and humans. Programmed death ligand 1 (PD-L1) is expressed by multiple tumors, and its interaction with PD-1 resulted in tumor escape in experimental models. To investigate the role of PD-1 in impairing spontaneous tumor Ag-specific CD8(+) T cells in melanoma patients, we have examined the effect of PD-1 expression on ex vivo detectable CD8(+) T cells specific to the tumor Ag NY-ESO-1. In contrast to EBV, influenza, or Melan-A/MART-1-specific CD8(+) T cells, NY-ESO-1-specific CD8(+) T cells up-regulated PD-1 expression. PD-1 up-regulation on spontaneous NY-ESO-1-specific CD8(+) T cells occurs along with T cell activation and is not directly associated with an inability to produce cytokines. Importantly, blockade of the PD-1/PD-L1 pathway in combination with prolonged Ag stimulation with PD-L1(+) APCs or melanoma cells augmented the number of cytokine-producing, proliferating, and total NY-ESO-1-specific CD8(+) T cells. Collectively, our findings support the role of PD-1 as a regulator of NY-ESO-1-specific CD8(+) T cell expansion in the context of chronic Ag stimulation. They further support the use of PD-1/PD-L1 pathway blockade in cancer patients to partially restore NY-ESO-1-specific CD8(+) T cell numbers and functions, increasing the likelihood of tumor regression.
Resumo:
MicroRNAs (miRNAs) are small non-coding RNAs that regulate various biological processes. Cell-free miRNAs measured in blood plasma have emerged as specific and sensitive markers of physiological processes and disease. In this study, we investigated whether circulating miRNAs can serve as biomarkers for the detection of autologous blood transfusion, a major doping technique that is still undetectable. Plasma miRNA levels were analyzed using high-throughput quantitative real-time PCR. Plasma samples were obtained before and at several time points after autologous blood transfusion (blood bag storage time 42 days) in 10 healthy subjects and 10 controls without transfusion. Other serum markers of erythropoiesis were determined in the same samples. Our results revealed a distinct change in the pattern of circulating miRNAs. Ten miRNAs were upregulated in transfusion samples compared with control samples. Among these, miR-30b, miR-30c, and miR-26b increased significantly and showed a 3.9-, 4.0-, and 3.0-fold change, respectively. The origin of these miRNAs was related to pulmonary and liver tissues. Erythropoietin (EPO) concentration decreased after blood reinfusion. A combination of miRNAs and EPO measurement in a mathematical model enhanced the efficiency of autologous transfusion detection through miRNA analysis. Therefore, our results lay the foundation for the development of miRNAs as novel blood-based biomarkers to detect autologous transfusion.
Resumo:
The paradoxical coexistence of spontaneous tumor antigen-specific immune responses with progressive disease in cancer patients furthers the need to dissect the molecular pathways involved in tumor-induced T cell dysfunction. In patients with advanced melanoma, we have previously shown that the cancer-germline antigen NY-ESO-1 stimulates spontaneous NY-ESO-1-specific CD8(+) T cells that up-regulate PD-1 expression. We also observed that PD-1 regulates NY-ESO-1-specific CD8(+) T cell expansion upon chronic antigen stimulation. In the present study, we show that a fraction of PD-1(+) NY-ESO-1-specific CD8(+) T cells in patients with advanced melanoma up-regulates Tim-3 expression and that Tim-3(+)PD-1(+) NY-ESO-1-specific CD8(+) T cells are more dysfunctional than Tim-3(-)PD-1(+) and Tim-3(-)PD-1(-) NY-ESO-1-specific CD8(+) T cells, producing less IFN-γ, TNF, and IL-2. Tim-3-Tim-3L blockade enhanced cytokine production by NY-ESO-1-specific CD8(+) T cells upon short ex vivo stimulation with cognate peptide, thus enhancing their functional capacity. In addition, Tim-3-Tim-3L blockade enhanced cytokine production and proliferation of NY-ESO-1-specific CD8(+) T cells upon prolonged antigen stimulation and acted in synergy with PD-1-PD-L1 blockade. Collectively, our findings support the use of Tim-3-Tim-3L blockade together with PD-1-PD-L1 blockade to reverse tumor-induced T cell exhaustion/dysfunction in patients with advanced melanoma.
Resumo:
Atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) are important dilators of the pulmonary circulation during the perinatal period. We compared the responses of pulmonary arteries (PA) and veins (PV) of newborn lambs to these peptides. ANP caused a greater relaxation of PA than of PV, and CNP caused a greater relaxation of PV than of PA. RIA showed that ANP induced a greater increase in cGMP content of PA than CNP. In PV, ANP and CNP caused a similar moderate increase in cGMP content. Receptor binding study showed more specific binding sites for ANP than for CNP in PA and more for CNP than for ANP in PV. Relative quantitative RT-PCR for natriuretic peptide receptor A (NPR-A) and B (NPR-B) mRNAs show that, in PA, NPR-A mRNA is more prevalent than NPR-B mRNA, whereas, in PV, NPR-B mRNA is more prevalent than NPR-A mRNA. In conclusion, in the pulmonary circulation, arteries are the major site of action for ANP, and veins are the major site for CNP. Furthermore, the differences in receptor abundance and the involvement of a cGMP-independent mechanism may contribute to the heterogeneous effects of the natriuretic peptides in PA and PV of newborn lambs.
Resumo:
Although melanoma vaccines stimulate tumor antigen-specific CD8(+) T cells, objective clinical responses are rarely observed. To investigate this discrepancy, we evaluated the character of vaccine-induced CD8(+) T cells with regard to the inhibitory T-cell coreceptors PD-1 and Tim-3 in patients with metastatic melanoma who were administered tumor vaccines. The vaccines included incomplete Freund's adjuvant, CpG oligodeoxynucleotide (CpG), and the HLA-A2-restricted analog peptide NY-ESO-1 157-165V, either by itself or in combination with the pan-DR epitope NY-ESO-1 119-143. Both vaccines stimulated rapid tumor antigen-specific CD8(+) T-cell responses detected ex vivo, however, tumor antigen-specific CD8(+) T cells produced more IFN-γ and exhibited higher lytic function upon immunization with MHC class I and class II epitopes. Notably, the vast majority of vaccine-induced CD8(+) T cells upregulated PD-1 and a minority also upregulated Tim-3. Levels of PD-1 and Tim-3 expression by vaccine-induced CD8(+) T cells at the time of vaccine administration correlated inversely with their expansion in vivo. Dual blockade of PD-1 and Tim-3 enhanced the expansion and cytokine production of vaccine-induced CD8(+) T cells in vitro. Collectively, our findings support the use of PD-1 and Tim-3 blockades with cancer vaccines to stimulate potent antitumor T-cell responses and increase the likelihood of clinical responses in patients with advanced melanoma.