15 resultados para Sand, Ann-Britt

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allegre et al. recently presented new experimental data regarding the dependence of the streaming potential coupling coefficient with the saturation of the water phase. Such experiments are important to model the self-potential response associated with the flow of water in the vadose zone and the electroseismic/seismoelectric conversions in unsaturated porous media. However, the approach used to interpret the data is questionable and the conclusions reached by Allegre et al. likely incorrect

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. METHODS AND RESULTS: Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl(3)-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. CONCLUSIONS: Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate estimates of water losses by evaporation from shallow water tables are important for hydrological, agricultural, and climatic purposes. An experiment was conducted in a weighing lysimeter to characterize the diurnal dynamics of evaporation under natural conditions. Sampling revealed a completely dry surface sand layer after 5 days of evaporation. Its thickness was <1 cm early in the morning, increasing to reach 4?5 cm in the evening. This evidence points out fundamental limitations of the approaches that assume hydraulic connectivity from the water table up to the surface, as well as those that suppose monotonic drying when unsteady conditions prevail. The computed vapor phase diffusion rates from the apparent drying front based on Fick's law failed to reproduce the measured cumulative evaporation during the sampling day. We propose that two processes rule natural evaporation resulting from daily fluctuations of climatic variables: (i) evaporation of water, stored during nighttime due to redistribution and vapor condensation, directly into the atmosphere from the soil surface during the early morning hours, that could be simulated using a mass transfer approach and (ii) subsurface evaporation limited by Fickian diffusion, afterward. For the conditions prevailing during the sampling day, the amount of water stored at the vicinity of the soil surface was 0.3 mm and was depleted before 11:00. Combining evaporation from the surface before 11:00 and subsurface evaporation limited by Fickian diffusion after that time, the agreement between the estimated and measured cumulative evaporation was significantly improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Diabetic retinopathy (DR) is a leading cause of blindness, yet pertinent animal models are uncommon. The sand rat (Psammomys obesus), exhibiting diet-induced metabolic syndrome, might constitute a relevant model. METHODS: Adult P. obesus (n = 39) were maintained in captivity for 4 to 7 months and fed either vegetation-based diets (n = 13) or standard rat chow (n = 26). Although plant-fed animals exhibited uniform body weight and blood glucose levels over time, nearly 60% of rat chow-raised animals developed diabetes-like symptoms (test group). Animals were killed, and their eyes and vitreous were processed for immunochemistry. RESULTS: Compared with plant-fed animals, diabetic animals showed many abnormal vascular features, including vasodilation, tortuosity, and pericyte loss within the blood vessels, hyperproteinemia and elevated ratios of proangiogenic and antiangiogenic growth factors in the vitreous, and blood-retinal barrier breakdown. Furthermore, there were statistically significant decreases in retinal cell layer thicknesses and densities, accompanied by profound alterations in glia (downregulation of glutamine synthetase, glutamate-aspartate transporter, upregulation of glial fibrillar acidic protein) and many neurons (reduced expression of protein kinase Cα and Cξ in bipolar cells, axonal degeneration in ganglion cells). Cone photoreceptors were particularly affected, with reduced expression of short- and mid-/long-wavelength opsins. Hypercaloric diet nondiabetic animals showed intermediate values. CONCLUSIONS: Simple dietary modulation of P. obesus induces a rapid and severe phenotype closely resembling human type 2 DR. This species presents a valuable novel experimental model for probing the neural (especially cone photoreceptor) pathogenic modifications that are difficult to study in humans and for screening therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect "yellow" family of proteins. In this study, we immunized mice with 17 plasmids encoding L. longiplapis salivary proteins and demonstrated that LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN-γ upon stimulation with LJM11, demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from L. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. LJM11, LJM111, and LJM17 all acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines, and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed β-propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket, whereas LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of inoculation of single pure bacterial cultures into complex microbiomes, for example, in order to achieve increased pollutant degradation rates in contaminated material (that is, bioaugmentation), has been frustrated by insufficient knowledge on the behaviour of the inoculated bacteria under the specific abiotic and biotic boundary conditions. Here we present a comprehensive analysis of genome-wide gene expression of the bacterium Sphingomonas wittichii RW1 in contaminated non-sterile sand, compared with regular suspended batch growth in liquid culture. RW1 is a well-known bacterium capable of mineralizing dibenzodioxins and dibenzofurans. We tested the reactions of the cells both during the immediate transition phase from liquid culture to sand with or without dibenzofuran, as well as during growth and stationary phase in sand. Cells during transition show stationary phase characteristics, evidence for stress and for nutrient scavenging, and adjust their primary metabolism if they were not precultured on the same contaminant as found in the soil. Cells growing and surviving in sand degrade dibenzofuran but display a very different transcriptome signature as in liquid or in liquid culture exposed to chemicals inducing drought stress, and we obtain evidence for numerous 'soil-specific' expressed genes. Studies focusing on inoculation efficacy should test behaviour under conditions as closely as possible mimicking the intended microbiome conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new species of lacertid lizard of the genus Psammodromus is described from the Iberian Peninsula. Genetic and recently published phenotypic data support the differentiation of Psammodromus hispanicus into three, and not as previously suggested two, distinct lineages. Age estimates, lineage allopatry, the lack of mitochondrial and nuclear haplotype sharing between lineages, ecological niche divergence, and the current biogeographic distribution, indicated that the three lineages correspond to three independent species. Here, we describe a new species, Psammodromus occidentalis sp. n., which is genetically different from the other sand racers and differentiated by the number of femoral pores, number of throat scales, snout shape, head ratio, green nuptial coloration, and number of supralabial scales below the subocular scale. We also propose to upgrade the two previously recognized subspecies, Psammodromus hispanicus hispanicus Fitzinger, 1826 from central Spain and Psammodromus hispanicus edwardsianus (Dugès, 1829) from eastern Spain, to the species level: Psammodromus hispanicus stat. nov. and Psammodromus edwardsianus stat. nov. Given that the holotype of Psammodromus hispanicus was lost, we designate a neotype. We also analysed museum specimens of P. blanci, P. microdactylus and P. algirus to describe differentiation of the Psammodromus hispanicus lineages/species from their closest relatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.