13 resultados para SWITCH
em Université de Lausanne, Switzerland
Resumo:
Rubisco is responsible for the fixation of CO2 into organic compounds through photosynthesis and thus has a great agronomic importance. It is well established that this enzyme suffers from a slow catalysis, and its low specificity results into photorespiration, which is considered as an energy waste for the plant. However, natural variations exist, and some Rubisco lineages, such as in C4 plants, exhibit higher catalytic efficiencies coupled to lower specificities. These C4 kinetics could have evolved as an adaptation to the higher CO2 concentration present in C4 photosynthetic cells. In this study, using phylogenetic analyses on a large data set of C3 and C4 monocots, we showed that the rbcL gene, which encodes the large subunit of Rubisco, evolved under positive selection in independent C4 lineages. This confirms that selective pressures on Rubisco have been switched in C4 plants by the high CO2 environment prevailing in their photosynthetic cells. Eight rbcL codons evolving under positive selection in C4 clades were involved in parallel changes among the 23 independent monocot C4 lineages included in this study. These amino acids are potentially responsible for the C4 kinetics, and their identification opens new roads for human-directed Rubisco engineering. The introgression of C4-like high-efficiency Rubisco would strongly enhance C3 crop yields in the future CO2-enriched atmosphere.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) compose a family of nuclear receptors that mediate the effects of lipidic ligands at the transcriptional level. In this review, we highlight advances in the understanding of the PPAR ligand binding domain (LBD) structure at the atomic level. The overall structure of PPARs LBD is described, and important protein ligand interactions are presented. Structure-activity relationships between isotypes structures and ligand specificity are addressed. It is shown that the numerous experimental three-dimensional structures available, together with in silico simulations, help understanding the role played by the activating function-2 (AF-2) in PPARs activation and its underlying molecular mechanism. The relation between the PPARs constitutive activity and the intrinsic stability of the active conformation is discussed. Finally, the interactions of PPARs LBD with co-activators or co-repressors, as well as with the retinoid X receptor (RXR) are described and considered in relation to PPARs activation.
Resumo:
Purpose: Sirolimus (SRL) has been used to replace calcineurin inhibitors (CNI) for various indications including CNI-induced toxicity. The aim of this study was to evaluate the efficacy and safety of switching from CNI to SRL in stable renal transplant recipients (RTR) with low grade proteinuria (<1 g/24 h). Methods and materials: Between 2001 and 2007, 41 patients (20 females, 21 males; mean age 47 ± 13) were switched after a median time post-transplantation of 73.5 months (range 0.2-273.2 months). Indications for switch were CNI nephrotoxicity (39%), thrombotic micro-angiopathy (14.6%), post-transplantation cancer (24.4%), CNI neurotoxicity (7.4%), or others (14.6%). Mean follow-up after SRL switch was 23.8±16.3 months. Mean SRL dosage and through levels were 2.4 ± 1.1 mg/day and 8 ± 2.2 ug/l respectively. Immunosuppressive regiments were SRL + mycophenolate mofetil (MMF) (31.7%), SRL + MMF + prednisone (36.58%), SRL + prednisone (19.51%), SRL + Azathioprine (9.75%), or SRL alone (2.43%). Results: Mean creatinine decreased from 164 to 143 μmol/l (p <0.03), mean estimated glomerular filtration rate (eGFR) increased significantly from 50.13 to 55.01 ml/minute (p <0.00001), mean systolic and diastolic blood pressure decreased from 138 to 132 mm Hg (p <0.03) and from 83 to78 mm Hg (p <0.01), but mean proteinuria increased from 0.21 to 0.63 g/24 h (p <0.001). While mean total cholesterolemia didn't increased significantly from 5.09 to 5.56 mmol/l (p = 0.06). The main complications after SRL switch were dermatitis (19.5%), urinary tract infections (24.4%), ankle edema (13.3%), and transient oral ulcers (20%). Acute rejection after the switch occurred in 7.3% of patients (n = 3), and 2 acute rejections were successfully treated with corticosteroids and 1 did not respond to treatment (not related to switch). SRL had to be discontinued in 17% of patients (2 nephrotic syndromes, 2 severe edema, 1 acute rejection, 1 thrombotic micro-angiopathy, and 1 fever). Conclusion: In conclusion, we found that switching from CNI to SRL in stable RTR was safe and associated with a significant improvement of renal function and blood pressure. Known side-effects of SRL led to drug discontinuation in less than 20% of patients and the acute rejection rate was 7.3%. This experience underlines the importance of patient selection before switching to SRL, in particular regarding preswitch proteinuria.
Resumo:
The final decision on cell fate, survival versus cell death, relies on complex and tightly regulated checkpoint mechanisms. The caspase-3 protease is a predominant player in the execution of apoptosis. However, recent progress has shown that this protease paradoxically can also protect cells from death. Here, we discuss the underappreciated, protective, and prosurvival role of caspase-3 and detail the evidence showing that caspase-3, through differential processing of p120 Ras GTPase-activating protein (RasGAP), can modulate a given set of proteins to generate, depending on the intensity of the input signals, opposite outcomes (survival vs death).
Resumo:
PPARs (peroxisome-proliferator-activated receptors) alpha, beta/delta and gamma are a group of transcription factors that are involved in numerous processes, including lipid metabolism and adipogenesis. By comparing liver mRNAs of wild-type and PPARalpha-null mice using microarrays, a novel putative target gene of PPARalpha, G0S2 (G0/G1 switch gene 2), was identified. Hepatic expression of G0S2 was up-regulated by fasting and by the PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. Surprisingly, the G0S2 mRNA level was highest in brown and white adipose tissue and was greatly up-regulated during mouse 3T3-L1 and human SGBS (Simpson-Golabi-Behmel syndrome) adipogenesis. Transactivation, gel shift and chromatin immunoprecipitation assays indicated that G0S2 is a direct PPARgamma and probable PPARalpha target gene with a functional PPRE (PPAR-responsive element) in its promoter. Up-regulation of G0S2 mRNA seemed to be specific for adipogenesis, and was not observed during osteogenesis or myogenesis. In 3T3-L1 fibroblasts, expression of G0S2 was associated with growth arrest, which is required for 3T3-L1 adipogenesis. Together, these data indicate that G0S2 is a novel target gene of PPARs that may be involved in adipocyte differentiation.
Resumo:
A single coronary artery can complicate the surgical technique of arterial switch operations, impairing early and late outcomes. We propose a new surgical approach, successfully applied in a 2.1 kg neonate, aimed at reducing the risk of early and late compression and/or distortion of the newly constructed coronary artery system.
Resumo:
BACKGROUND: Hyperzincemia and hypercalprotectinemia (Hz/Hc) is a distinct autoinflammatory entity involving extremely high serum concentrations of the proinflammatory alarmin myeloid-related protein (MRP) 8/14 (S100A8/S100A9 and calprotectin). OBJECTIVE: We sought to characterize the genetic cause and clinical spectrum of Hz/Hc. METHODS: Proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1) gene sequencing was performed in 14 patients with Hz/Hc, and their clinical phenotype was compared with that of 11 patients with pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome. PSTPIP1-pyrin interactions were analyzed by means of immunoprecipitation and Western blotting. A structural model of the PSTPIP1 dimer was generated. Cytokine profiles were analyzed by using the multiplex immunoassay, and MRP8/14 serum concentrations were analyzed by using an ELISA. RESULTS: Thirteen patients were heterozygous for a missense mutation in the PSTPIP1 gene, resulting in a p.E250K mutation, and 1 carried a mutation resulting in p.E257K. Both mutations substantially alter the electrostatic potential of the PSTPIP1 dimer model in a region critical for protein-protein interaction. Patients with Hz/Hc have extremely high MRP8/14 concentrations (2045 ± 1300 μg/mL) compared with those with PAPA syndrome (116 ± 74 μg/mL) and have a distinct clinical phenotype. A specific cytokine profile is associated with Hz/Hc. Hz/Hc mutations altered protein binding of PSTPIP1, increasing interaction with pyrin through phosphorylation of PSTPIP1. CONCLUSION: Mutations resulting in charge reversal in the y-domain of PSTPIP1 (E→K) and increased interaction with pyrin cause a distinct autoinflammatory disorder defined by clinical and biochemical features not found in patients with PAPA syndrome, indicating a unique genotype-phenotype correlation for mutations in the PSTPIP1 gene. This is the first inborn autoinflammatory syndrome in which inflammation is driven by uncontrolled release of members of the alarmin family.
Resumo:
Patients with a solid organ transplant have increased in numbers and in individual survival in Switzerland over the last decades. As a consequence of long-term immunosuppression, skin cancer in solid organ recipients (SOTRs) has been recognized as an important problem. Screening and education of potential SOTRs about prevention of sun damage and early recognition of skin cancer are important before transplantation. Once transplanted, SOTRs should be seen by a dermatologist yearly for repeat education as well as early diagnosis, prevention and treatment of skin cancer. Squamous cell carcinoma of the skin (SCC) is the most frequent cancer in the setting of long-term immunosuppression. Sun protection by behaviour, clothing and daily sun screen application is the most effective prevention. Cumulative sun damage results in field cancerisation with numerous in-situ SCC such as actinic keratosis and Bowen's disease which should be treated proactively. Invasive SCC is cured by complete surgical excision. Early removal is the best precaution against potential metastases of SCC. Reduction of immunosuppression and switch to mTOR inhibitors and potentially, mycophenolate, may reduce the incidence of further SCC. Chemoprevention with the retinoid acitretin reduces the recurrence rate of SCC. The dermatological follow-up of SOTRs should be integrated into the comprehensive post-transplant care.
Resumo:
More than seventy years after their initial characterisation, the aetiology of inflammatory bowel diseases remains elusive. A recent review evaluating the incidence trends of the last 25 years concluded that an increasing incidence has been observed almost worldwide. A north-south gradient is still found in Europe. Genetic associations are variably reproduced worldwide and indicate a strong impact of environmental factors. Tumour necrosis factor alpha (TNF-alpha) has been shown to play a critical role in the pathogenesis of inflammatory bowel disease (IBD). TNF-alpha blockers are biological agents that specifically target this key cytokine in the inflammatory process and have become a mainstay in the therapy of inflammatory bowel diseases. This paper reviews the necessary investigations before using such agents, the use of such agents in pregnancy and lactation, the role of co-immunosuppression, how to monitor efficacy and safety, dose-adaptation, and the decision as to when to switch to another TNF-alpha blocker. Finally it gives recommendations for special situations. Currently there are three TNF-alpha blockers available for clinical use in IBD in Switzerland: infliximab (Remicade), adalimumab (Humira) and certolizumab pegol (Cimzia). Infliximab is a chimeric monoclonal antibody composed of a human IgG1 constant region and a murine variable region and is administered intravenously. Adalimumab is a humanised monoclonal antibody, with both human IgG1 constant and variable regions. Certolizumab pegol is a pegylated, humanised monoclonal anti-TNF fragment antigen binding fragment. Both adalimumab and certolizumab pegol are administered by subcutaneous injection. The efficacy and safety of TNF-alpha blockers in Crohn's disease has been reviewed. The authors conclude that the three above-mentioned agents are effective in luminal Crohn's disease. In fistulizing Crohn's disease, TNF-alpha blockers other than infliximab require additional investigation.
Resumo:
Hatching is an important niche shift, and embryos in a wide range of taxa can either accelerate or delay this life-history switch in order to avoid stage-specific risks. Such behavior can occur in response to stress itself and to chemical cues that allow anticipation of stress. We studied the genetic organization of this phenotypic plasticity and tested whether there are differences among populations and across environments in order to learn more about the evolutionary potential of stress-induced hatching. As a study species, we chose the brown trout (Salmo trutta; Salmonidae). Gametes were collected from five natural populations (within one river network) and used for full-factorial in vitro fertilizations. The resulting embryos were either directly infected with Pseudomonas fluorescens or were exposed to waterborne cues from P. fluorescens-infected conspecifics. We found that direct inoculation with P. fluorescens increased embryonic mortality and induced hatching in all host populations. Exposure to waterborne cues revealed population-specific responses. We found significant additive genetic variation for hatching time, and genetic variation in trait plasticity. In conclusion, hatching is induced in response to infection and can be affected by waterborne cues of infection, but populations and families differ in their reaction to the latter.
Resumo:
Biochemical evidence implicates the death-domain (DD) protein PIDD as a molecular switch capable of signaling cell survival or death in response to genotoxic stress. PIDD activity is determined by binding-partner selection at its DD: whereas recruitment of RIP1 triggers prosurvival NF-κB signaling, recruitment of RAIDD activates proapoptotic caspase-2 via PIDDosome formation. However, it remains unclear how interactor selection, and thus fate decision, is regulated at the PIDD platform. We show that the PIDDosome functions in the "Chk1-suppressed" apoptotic response to DNA damage, a conserved ATM/ATR-caspase-2 pathway antagonized by Chk1. In this pathway, ATM phosphorylates PIDD on Thr788 within the DD. This phosphorylation is necessary and sufficient for RAIDD binding and caspase-2 activation. Conversely, nonphosphorylatable PIDD fails to bind RAIDD or activate caspase-2, and engages prosurvival RIP1 instead. Thus, ATM phosphorylation of the PIDD DD enables a binary switch through which cells elect to survive or die upon DNA injury.
Resumo:
Proteins can switch between different conformations in response to stimuli, such as pH or temperature variations, or to the binding of ligands. Such plasticity and its kinetics can have a crucial functional role, and their characterization has taken center stage in protein research. As an example, Topoisomerases are particularly interesting enzymes capable of managing tangled and supercoiled double-stranded DNA, thus facilitating many physiological processes. In this work, we describe the use of a cantilever-based nanomotion sensor to characterize the dynamics of human topoisomerase II (Topo II) enzymes and their response to different kinds of ligands, such as ATP, which enhance the conformational dynamics. The sensitivity and time resolution of this sensor allow determining quantitatively the correlation between the ATP concentration and the rate of Topo II conformational changes. Furthermore, we show how to rationalize the experimental results in a comprehensive model that takes into account both the physics of the cantilever and the dynamics of the ATPase cycle of the enzyme, shedding light on the kinetics of the process. Finally, we study the effect of aclarubicin, an anticancer drug, demonstrating that it affects directly the Topo II molecule inhibiting its conformational changes. These results pave the way to a new way of studying the intrinsic dynamics of proteins and of protein complexes allowing new applications ranging from fundamental proteomics to drug discovery and development and possibly to clinical practice.
Resumo:
Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling.