3 resultados para SPIDER ARANEUS-DIADEMATUS
em Université de Lausanne, Switzerland
Resumo:
New G-banded karyotypes from populations of the common shrew Sorex araneus Linnaeus, 1758 provide a clearer picture of the distribution of chromosome races in central Europe. As expected according to their occurrence in neighbouring countries, the Jutland (kq, no), Laska (k/o) and Drnholec (ko, nr) races are also found in Germany. A new chromosome race "Rugen" (kq) is described from this Baltic Island. Together with the previously recorded races Ulm and Mooswald (kr), six chromosome races are now known from Germany. The resulting distribution pattern is characterized by high frequencies of different race-specific metacentrics at the periphery of the country and clines with decreasing frequencies towards the centre which is occupied by the Ulm race. This race is acrocentric for all chromosome arms involved in the observed race-specific fusions and represents a buffer between the surrounding, more metacentric races. According to the present distribution of these metacentrics, a scenario for the postglacial recolonization of central Europe by S. araneus populations on three different routes is proposed: from the east along the northern slopes of the Carpathian Arc, from the south-east along the Danube Valley and from the south-west through the Upper Rhine Valley.
Resumo:
It has been long recognized that highly polymorphic genetic markers can lead to underestimation of divergence between populations when migration is low. Microsatellite loci, which are characterized by extremely high mutation rates, are particularly likely to be affected. Here, we report genetic differentiation estimates in a contact zone between two chromosome races of the common shrew (Sorex araneus), based on 10 autosomal microsatellites, a newly developed Y-chromosome microsatellite, and mitochondrial DNA. These results are compared to previous data on proteins and karyotypes. Estimates of genetic differentiation based on F- and R-statistics are much lower for autosomal microsatellites than for all other genetic markers. We show by simulations that this discrepancy stems mainly from the high mutation rate of microsatellite markers for F-statistics and from deviations from a single-step mutation model for R-statistics. The sex-linked genetic markers show that all gene exchange between races is mediated by females. The absence of male-mediated gene flow most likely results from male hybrid sterility.
Resumo:
Three sibling species of shrews, the common shrew (Sorex araneus), the Valais shrew (S. antinorii) and the Jersey shrew (S. coronatus) are morphologically similar. Different techniques based on karyorypes, morphology, biochemistry and genetic markers have been developed to identify individuals from these taxa. In this paper, we have used multiple microsatellite markers (L13, L14 and L99) to identify 55 dead animals coming from the Tarentaise Valley in France. As some individuals showed an unclear pattern with loci previously thought to be diagnostic (Lugon-Moulin et al. 2000), we have used morphologic measurements (Hausser et al. 1991) to confirm the status of these animals. This analysis clearly showed the limitations of the use of genetic diagnostic markers that have been designed in local populations and then applied to a wider scale. Even if these markers have great advantages over other techniques (i.e. simple to use and do not require samples from living animals), they should always be used with caution. There is always a risk of a locus not being diagnostic in the sampling region or in finding individuals with hybrid genotypes. Additional genetic markers should then be used, simultaneously with other identification techniques, to be sure of the status of the individuals.