84 resultados para SOLUTE-SOLVENT
em Université de Lausanne, Switzerland
Resumo:
Several ink dating methods based on solvents analysis using gas chromatography/mass spectrometry (GC/MS) were proposed in the last decades. These methods follow the drying of solvents from ballpoint pen inks on paper and seem very promising. However, several questions arose over the last few years among questioned documents examiners regarding the transparency and reproducibility of the proposed techniques. These questions should be carefully studied for accurate and ethical application of this methodology in casework. Inspired by a real investigation involving ink dating, the present paper discusses this particular issue throughout four main topics: aging processes, dating methods, validation procedures and data interpretation. This work presents a wide picture of the ink dating field, warns about potential shortcomings and also proposes some solutions to avoid reporting errors in court.
Resumo:
ABSTRACT. A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons.
Resumo:
The aim of this study was to identify genes involved in solute and matric stress mitigation in the polycyclic aromatic hydrocarbon (PAH)-degrading Novosphingobium sp. strain LH128. The genes were identified using plasposon mutagenesis and by selection of mutants that showed impaired growth in a medium containing 450 mM NaCl as a solute stress or 10% (wt/vol) polyethylene glycol (PEG) 6000 as a matric stress. Eleven and 14 mutants showed growth impairment when exposed to solute and matric stresses, respectively. The disrupted sequences were mapped on a draft genome sequence of strain LH128, and the corresponding gene functions were predicted. None of them were shared between solute and matric stress-impacted mutants. One NaCl-affected mutant (i.e., NA7E1) with a disruption in a gene encoding a putative outer membrane protein (OpsA) was susceptible to lower NaCl concentrations than the other mutants. The growth of NA7E1 was impacted by other ions and nonionic solutes and by sodium dodecyl sulfate (SDS), suggesting that opsA is involved in osmotic stress mitigation and/or outer membrane stability in strain LH128. NA7E1 was also the only mutant that showed reduced growth and less-efficient phenanthrene degradation in soil compared to the wild type. Moreover, the survival of NA7E1 in soil decreased significantly when the moisture content was decreased but was unaffected when soluble solutes from sandy soil were removed by washing. opsA appears to be important for the survival of strain LH128 in soil, especially in the case of reduced moisture content, probably by mitigating the effects of solute stress and retaining membrane stability.
Resumo:
Identifying transport pathways in fractured rock is extremely challenging as flow is often organized in a few fractures that occupy a very small portion of the rock volume. We demonstrate that saline tracer experiments combined with single-hole ground penetrating radar (GPR) reflection imaging can be used to monitor saline tracer movement within mm-aperture fractures. A dipole tracer test was performed in a granitic aquifer by injecting a saline solution in a known fracture, while repeatedly acquiring single-hole GPR sections in the pumping borehole located 6 m away. The final depth-migrated difference sections make it possible to identify consistent temporal changes over a 30 m depth interval at locations corresponding to fractures previously imaged in GPR sections acquired under natural flow and tracer-free conditions. The experiment allows determining the dominant flow paths of the injected tracer and the velocity (0.4-0.7 m/min) of the tracer front. Citation: Dorn, C., N. Linde, T. Le Borgne, O. Bour, and L. Baron (2011), Single-hole GPR reflection imaging of solute transport in a granitic aquifer, Geophys. Res. Lett., 38, L08401, doi: 10.1029/2011GL047152.
Resumo:
Members of the genus Sphingomonas are important catalysts for removal of polycyclic aromatic hydrocarbons (PAHs) in soil, but their activity can be affected by various stress factors. This study examines the physiological and genome-wide transcription response of the phenanthrene-degrading Sphingomonas sp. strain LH128 in biofilms to solute stress (invoked by 450 mM NaCl solution), either as an acute (4-h) or a chronic (3-day) exposure. The degree of membrane fatty acid saturation was increased as a response to chronic stress. Oxygen consumption in the biofilms and phenanthrene mineralization activities of biofilm cells were, however, not significantly affected after imposing either acute or chronic stress. This finding was in agreement with the transcriptomic data, since genes involved in PAH degradation were not differentially expressed in stressed conditions compared to nonstressed conditions. The transcriptomic data suggest that LH128 adapts to NaCl stress by (i) increasing the expression of genes coping with osmolytic and ionic stress such as biosynthesis of compatible solutes and regulation of ion homeostasis, (ii) increasing the expression of genes involved in general stress response, (iii) changing the expression of general and specific regulatory functions, and (iv) decreasing the expression of protein synthesis such as proteins involved in motility. Differences in gene expression between cells under acute and chronic stress suggest that LH128 goes through changes in genome-wide expression to fully adapt to NaCl stress, without significantly changing phenanthrene degrading activity.
Resumo:
Hygiene practices in neonatal units require the use of disinfecting solutions containing ethanol or isopropanol. Newly disinfected hands or soaked swabs introduced inside the incubators may emit vapours leading to alcohol exposures to the neonates. Alcohol emissions from hands and other occasional sources (e.g. soaked disinfecting swabs) lead to measurable levels of vapours inside incubators. Average isopropanol and ethanol concentrations ranging from 33.1 to 171.4 mg/m(3) (13.8 to 71.4 ppm) and from 23.5 to more than 146 mg/m3 (9.8 to > 6 ppm) respectively were measured inside occupied incubators (n = 11, measurement time about 230 min) in a neonatal unit of the Centre Hospitalier Universitaire Vaudois in Lausanne during regular activity. Exposure concentrations in a wide range of possible situations were then investigated by modeling using the one-box dispersion model. Theoretical modeling suggested typical isopropanol peaks and average concentrations ranging between 10(2) and 10(3) mg/m(3) (4.10(1) to 4.10(2)ppm), and 10(1) to 10(2) mg/m(3) (4 to 4.10(1) ppm), respectively. Based on our results we suggest several preventive measures to reduce the neonates' exposures to solvent vapours.
Resumo:
The term water stress refers to the effects of low water availability on microbial growth and physiology. Water availability has been proposed as a major constraint for the use of microorganisms in contaminated sites with the purpose of bioremediation. Sphingomonas wittichii RW1 is a bacterium capable of degrading the xenobiotic compounds dibenzofuran and dibenzo-p-dioxin, and has potential to be used for targeted bioremediation. The aim of the current work was to identify genes implicated in water stress in RW1 by means of transposon mutagenesis and mutant growth experiments. Conditions of low water potential were mimicked by adding NaCl to the growth media. Three different mutant selection or separation method were tested which, however recovered different mutants. Recovered transposon mutants with poorer growth under salt-induced water stress carried insertions in genes involved in proline and glutamate biosynthesis, and further in a gene putatively involved in aromatic compound catabolism. Transposon mutants growing poorer on medium with lowered water potential also included ones that had insertions in genes involved in more general functions such as transcriptional regulation, elongation factor, cell division protein, RNA polymerase β or an aconitase.
Resumo:
Salvia divinorum Epling & Jativa is an hallucinogenic mint traditionally used for curing and divination by the Mazatec Indians of Oaxaca, Mexico. Young people from Mexican cities were reported to smoke dried leaves of S. divinorum as a marijuana substitute. Recently, two S. divinorum specimens were seized in a large-scale illicit in-door and out-door hemp plantation. Salvinorin A also called divinorin A, a trans-neoclerodane diterpene, was identified in several organic solvent extracts by gas chromatography-mass spectrometry. The botanical identity of the plant was confirmed by comparing it to an authentic herbarium specimen. More plants were then discovered in Swiss horticulturists greenhouses. All these data taken together suggest that many attempts exist in Switzerland to use S. divinorum as a recreational drug. This phenomenon may be enhanced because neither the magic mint, nor its active compound are banned substances listed in the Swiss narcotic law.
Resumo:
To assess the variability of the response to exogenous atrial natriuretic peptide (ANP), it was infused at the rate of 1 microgram/min for 2 h in 6 salt-loaded normal volunteers under controlled conditions on 2 occasions at an interval of 1 week. The effect on solute excretion and the haemodynamic and endocrine actions were highly reproducible. The constant ANP infusion caused a delayed and prolonged excretion of sodium, chloride and calcium, no change in potassium or phosphate excretion or in glomerular filtration rate but a marked decrease in renal plasma flow. Blood pressure, heart rate and the plasma levels of angiotensin II, aldosterone, arginine vasopressin and plasma renin activity were unaltered. The effect of a 2-h infusion of ANP 0.5 microgram/min or its vehicle on apparent hepatic blood flow (HBF) was also studied in 14 normal volunteers by measuring the indocyanine green clearance. A 21% decrease in HBF was observed in subjects who received the ANP infusion (p less than 0.01 vs vehicle). Thus, ANP infused at a dose that did not lower blood pressure decreased both renal and liver blood flow in normotensive volunteers. The renal and endocrine responses to ANP were reproducible over a 1-week interval.
Resumo:
Knowledge of the spatial distribution of hydraulic conductivity (K) within an aquifer is critical for reliable predictions of solute transport and the development of effective groundwater management and/or remediation strategies. While core analyses and hydraulic logging can provide highly detailed information, such information is inherently localized around boreholes that tend to be sparsely distributed throughout the aquifer volume. Conversely, larger-scale hydraulic experiments like pumping and tracer tests provide relatively low-resolution estimates of K in the investigated subsurface region. As a result, traditional hydrogeological measurement techniques contain a gap in terms of spatial resolution and coverage, and they are often alone inadequate for characterizing heterogeneous aquifers. Geophysical methods have the potential to bridge this gap. The recent increased interest in the application of geophysical methods to hydrogeological problems is clearly evidenced by the formation and rapid growth of the domain of hydrogeophysics over the past decade (e.g., Rubin and Hubbard, 2005).
Resumo:
An active, solvent-free solid sampler was developed for the collection of 1,6-hexamethylene diisocyanate (HDI) aerosol and prepolymers. The sampler was made of a filter impregnated with 1-(2-methoxyphenyl)piperazine contained in a filter holder. Interferences with HDI were observed when a set of cellulose acetate filters and a polystyrene filter holder were used; a glass fiber filter and polypropylene filter cassette gave better results. The applicability of the sampling and analytical procedure was validated with a test chamber, constructed for the dynamic generation of HDI aerosol and prepolymers in commercial two-component spray paints (Desmodur(R) N75) used in car refinishing. The particle size distribution, temporal stability, and spatial uniformity of the simulated aerosol were established in order to test the sample. The monitoring of aerosol concentrations was conducted with the solid sampler paired to the reference impinger technique (impinger flasks contained 10 mL of 0.5 mg/mL 1-(2-methoxyphenyl)piperazine in toluene) under a controlled atmosphere in the test chamber. Analyses of derivatized HDI and prepolymers were carried out by using high-performance liquid chromatography and ultraviolet detection. The correlation between the solvent-free and the impinger techniques appeared fairly good (Y = 0.979X - 0.161; R = 0.978), when the tests were conducted in the range of 0.1 to 10 times the threshold limit value (TLV) for HDI monomer and up to 60-mu-g/m3 (3 U.K. TLVs) for total -N = C = O groups.
Resumo:
Summary: Lipophilicity plays an important role in the determination and the comprehension of the pharmacokinetic behavior of drugs. It is usually expressed by the partition coefficient (log P) in the n-octanol/water system. The use of an additional solvent system (1,2-dichlorethane/water) is necessary to obtain complementary information, as the log Poct values alone are not sufficient to explain ail biological properties. The aim of this thesis is to develop tools allowing to predict lipophilicity of new drugs and to analyze the information yielded by those log P values. Part I presents the development of theoretical models used to predict lipophilicity. Chapter 2 shows the necessity to extend the existing solvatochromic analyses in order to predict correctly the lipophilicity of new and complex neutral compounds. In Chapter 3, solvatochromic analyses are used to develop a model for the prediction of the lipophilicity of ions. A global model was obtained allowing to estimate the lipophilicity of neutral, anionic and cationic solutes. Part II presents the detailed study of two physicochemical filters. Chapter 4 shows that the Discovery RP Amide C16 stationary phase allows to estimate lipophilicity of the neutral form of basic and acidic solutes, except of lipophilic acidic solutes. Those solutes present additional interactions with this particular stationary phase. In Chapter 5, 4 different IANI stationary phases are investigated. For neutral solutes, linear data are obtained whatever the IANI column used. For the ionized solutes, their retention is due to a balance of electrostatic and hydrophobie interactions. Thus no discrimination is observed between different series of solutes bearing the same charge, from one column to an other. Part III presents two examples illustrating the information obtained thanks to Structure-Properties Relationships (SPR). Comparing graphically lipophilicity values obtained in two different solvent systems allows to reveal the presence of intramolecular effects .such as internai H-bond (Chapter 6). SPR is used to study the partitioning of ionizable groups encountered in Medicinal Chemistry (Chapter7). Résumé La lipophilie joue un .rôle important dans la détermination et la compréhension du comportement pharmacocinétique des médicaments. Elle est généralement exprimée par le coefficient de partage (log P) d'un composé dans le système de solvants n-octanol/eau. L'utilisation d'un deuxième système de solvants (1,2-dichloroéthane/eau) s'est avérée nécessaire afin d'obtenir des informations complémentaires, les valeurs de log Poct seules n'étant pas suffisantes pour expliquer toutes les propriétés biologiques. Le but de cette thèse est de développer des outils permettant de prédire la lipophilie de nouveaux candidats médicaments et d'analyser l'information fournie par les valeurs de log P. La Partie I présente le développement de modèles théoriques utilisés pour prédire la lipophilie. Le chapitre 2 montre la nécessité de mettre à jour les analyses solvatochromiques existantes mais inadaptées à la prédiction de la lipophilie de nouveaux composés neutres. Dans le chapitre 3, la même méthodologie des analyses solvatochromiques est utilisée pour développer un modèle permettant de prédire la lipophilie des ions. Le modèle global obtenu permet la prédiction de la lipophilie de composés neutres, anioniques et cationiques. La Partie II présente l'étude approfondie de deux filtres physicochimiques. Le Chapitre 4 montre que la phase stationnaire Discovery RP Amide C16 permet la détermination de la lipophilie de la forme neutre de composés basiques et acides, à l'exception des acides très lipophiles. Ces derniers présentent des interactions supplémentaires avec cette phase stationnaire. Dans le Chapitre 5, 4 phases stationnaires IAM sont étudiées. Pour les composés neutres étudiés, des valeurs de rétention linéaires sont obtenues, quelque que soit la colonne IAM utilisée. Pour les composés ionisables, leur rétention est due à une balance entre des interactions électrostatiques et hydrophobes. Donc aucune discrimination n'est observée entre les différentes séries de composés portant la même charge d'une colonne à l'autre. La Partie III présente deux exemples illustrant les informations obtenues par l'utilisation des relations structures-propriétés. Comparer graphiquement la lipophilie mesurée dans deux différents systèmes de solvants permet de mettre en évidence la présence d'effets intramoléculaires tels que les liaisons hydrogène intramoléculaires (Chapitre 6). Cette approche des relations structures-propriétés est aussi appliquée à l'étude du partage de fonctions ionisables rencontrées en Chimie Thérapeutique (Chapitre 7) Résumé large public Pour exercer son effet thérapeutique, un médicament doit atteindre son site d'action en quantité suffisante. La quantité effective de médicament atteignant le site d'action dépend du nombre d'interactions entre le médicament et de nombreux constituants de l'organisme comme, par exemple, les enzymes du métabolisme ou les membranes biologiques. Le passage du médicament à travers ces membranes, appelé perméation, est un paramètre important à optimiser pour développer des médicaments plus puissants. La lipophilie joue un rôle clé dans la compréhension de la perméation passive des médicaments. La lipophilie est généralement exprimée par le coefficient de partage (log P) dans le système de solvants (non miscibles) n-octanol/eau. Les valeurs de log Poct seules se sont avérées insuffisantes pour expliquer la perméation à travers toutes les différentes membranes biologiques du corps humain. L'utilisation d'un système de solvants additionnel (le système 1,2-dichloroéthane/eau) a permis d'obtenir les informations complémentaires indispensables à une bonne compréhension du processus de perméation. Un grand nombre d'outils expérimentaux et théoriques sont à disposition pour étudier la lipophilie. Ce travail de thèse se focalise principalement sur le développement ou l'amélioration de certains de ces outils pour permettre leur application à un champ plus large de composés. Voici une brève description de deux de ces outils: 1)La factorisation de la lipophilie en fonction de certaines propriétés structurelles (telle que le volume) propres aux composés permet de développer des modèles théoriques utilisables pour la prédiction de la lipophilie de nouveaux composés ou médicaments. Cette approche est appliquée à l'analyse de la lipophilie de composés neutres ainsi qu'à la lipophilie de composés chargés. 2)La chromatographie liquide à haute pression sur phase inverse (RP-HPLC) est une méthode couramment utilisée pour la détermination expérimentale des valeurs de log Poct.
Resumo:
Static incubation tests, where microcapsules and beads are contacted with polymer and protein solutions, have been developed for the characterization of permselective materials applied for bioartificial organs and drug delivery. A combination of polymer ingress, detected by size-exclusion chromatography, and protein ingress/ egress, assessed by gel electrophoresis, provides information regarding the diffusion kinetics, molar mass cutoff(MMCO) and permeability. This represents an improvement over existing permeability measurements that are based on the diffusion of a single type of solute. Specifically, the permeability of capsules based on alginate, cellulose sulfate, polymethylene-co-guanidine were characterized as a function of membrane thickness. Solid alginate beads were also evaluated. The MMCO of these capsules was estimated to be between 80 and 90 kDa using polymers, and between 116-150 kDa with proteins. Apparently, the globular shape of the proteins (radius of gyration (Rg) of 4.2-4.6 nm) facilitates their passage through the membrane, comparatively to the polysaccharide coil conformation (Rg of 6.5-8.3 nm). An increase of the capsule membrane thickness reduced these values. The MMCO of the beads, which do not have a membrane limiting their permselective properties, was higher, between 110 and 200 kDa with dextrans, and between 150 and 220 kDa with proteins. Therefore, although the permeability estimated with biologically relevant molecules is generally higher due to their lower radius of gyration, both the MMCO of synthetic and natural watersoluble polymers correlate well, and can be used as in vitro metrics for the immune protection ability of microcapsules and microbeads. This article shows, to the authors' knowledge, the first reported concordance between permeability measures based on model natural and biological macromolecules.