58 resultados para SOLUBLE POLYMERS
em Université de Lausanne, Switzerland
Resumo:
The immunogenicity of a novel synthetic peptide consisting of an average of 40 (Asn-Ala-Asn-Pro) repeats of the circumsporozoite protein of Plasmodium falciparum, (NANP)40, was studied in mice without using any carrier proteins. First, high titers of anti-(NANP)40 antibodies could be obtained after immunization of C57BL/6 mice. These antibodies also reacted with an extract of mosquitoes infected with P. falciparum sporozoites. C57BL/6 nu/nu mice did not produce antibodies against (NANP)40. Secondly, when 14 strains of mice with nine different H-2 haplotypes were immunized with (NANP)40 without carrier, only H-2b mice were found to produce anti-(NANP)40 antibodies, whereas all non-H-2b mice were consistently unresponsive. This response was demonstrated to be I-A-linked by using recombinant and mutant mice. I-Ab [B10.A(5R)] mice produced anti-(NANP)40 antibodies as well as H-2b inbred mice. B6CH-2bm12 I-Ab-mutant mice showed only a very low response. Third, the antibody response against (NANP)40 could be induced in nonresponder mice by immunization with the peptide coupled to a carrier protein. In view of the existence of such an exceptional H-2b restriction in the response to sporozoite synthetic peptides in mice, the triggering of peptide-specific T cell responses in humans receiving sporozoite malaria vaccines might be difficult to achieve.
Resumo:
OBJECTIVES: Tissue engineering methods can be applied to regenerate diseased, or congenitally missing, urinary tract tissues. Urinary tract tissue cell cultures must be established in vitro and adequate matrices, acting as cell carriers, must be developed. Although degradable and nondegradable polymer matrices offer adequate mechanical stability, they are not optimal for cell adherence and growth. To overcome this problem, extracellular matrix proteins, permitting cell adhesion and regulation of cell proliferation and differentiation, can be adsorbed to the surface-modified polymer. METHODS: In this study, nondegradable polymer films, poly(ethylene terephthalate), were used as an experimental model. Films were modified by graft polymerization of acrylic acid to subsequently allow collagen type I and III immobilization. The following adhesion, proliferation of human urothelial cells, and induction of their stratification were analyzed. RESULTS: Collagen adsorption on 0.2 microg/cm2 poly(acrylic acid)-grafted polymer films rendered the matrix apt for human urothelial cell adhesion and proliferation. Furthermore, stratification of urothelial cells was demonstrated on these surface-modified matrices. CONCLUSIONS: These results have shown that surface-modified polymer matrices can be used to act as cell carriers for cultured human urothelial cells. Such a cell-matrix construct could be applied in reparative surgery of the urinary tract.
Resumo:
Human Fas ligand (L) (CD95L) and tumor necrosis factor (TNF)-alpha undergo metalloproteinase-mediated proteolytic processing in their extracellular domains resulting in the release of soluble trimeric ligands (soluble [s]FasL, sTNF-alpha) which, in the case of sFasL, is thought to be implicated in diseases such as hepatitis and AIDS. Here we show that the processing of sFasL occurs between Ser126 and Leu127. The apoptotic-inducing capacity of naturally processed sFasL was reduced by >1,000-fold compared with membrane-bound FasL, and injection of high doses of recombinant sFasL in mice did not induce liver failure. However, soluble FasL retained its capacity to interact with Fas, and restoration of its cytotoxic activity was achieved both in vitro and in vivo with the addition of cross-linking antibodies. Similarly, the marginal apoptotic activity of recombinant soluble TNF-related apoptosis-inducing ligand (sTRAIL), another member of the TNF ligand family, was greatly increased upon cross-linking. These results indicate that the mere trimerization of the Fas and TRAIL receptors may not be sufficient to trigger death signals. Thus, the observation that sFasL is less cytotoxic than membrane-bound FasL may explain why in certain types of cancer, systemic tissue damage is not detected, even though the levels of circulating sFasL are high.
Resumo:
C receptor type 1 (CR1, CD35) is present in a soluble form in plasma (sCR1). Soluble CR1 was measured with a specific ELISA assay in normal individuals and in patients with different diseases. The mean serum concentration of sCR1 in 31 normal donors was 31.4 +/- 7.8 ng/ml, and was identical in plasma. An increase in sCR1 was observed in 36 patients with end-stage renal failure on dialysis (54.8 +/- 11.7 ng/ml, p < 0.0001), and in 22 patients with liver cirrhosis (158.3 +/- 49.9 ng/ml, p < 0.0001). The mean sCR1 levels dropped from 181 +/- 62.7 to 52.1 +/- 24.0 ng/ml (p < 0.001) in nine patients who underwent liver transplantation, and was 33.5 +/- 7.3 in 10 patients with functioning renal grafts, indicating that the increase in sCR1 was reversible. Soluble CR1 was elevated in some hematologic malignancies (> 47 ng/ml), which included B cell lymphoma (12/19 patients), Hodgkin's lymphoma (4/4), and chronic myeloproliferative syndromes (4/5). By contrast, no increase was observed in acute myeloid or lymphoblastic leukemia (10) or myeloma (5). In two patients with chronic myeloproliferative syndromes, sCR1 decreased rapidly after chemotherapy. The mean concentration of sCR1 was not significantly modified in 181 HIV-infected patients at various stages of the disease (34.8 +/- 14.4 ng/ml), and in 13 patients with active SLE (38.3 +/- 19.6 ng/ml), although in both groups the number of CR1 was diminished on E. There was a weak but significant correlation between sCR1 and CR1 per E in HIV infection and SLE (r = 0.39, p < 0.0001, and r = 0.60, p < 0.03 respectively). In vitro, monocytes, lymphocytes, and neutrophils were found to release sCR1 into culture supernatants. In vivo, sCR1 was detected in the serum of SCID mice populated with human peripheral blood leukocytes. The sCR1 levels correlated with those of human IgG (r = 0.97, p < 0.0001), suggesting synthesis of sCR1 by the transferred lymphocytes. The mechanisms underlining the increased levels of sCR1 and its biologic consequences remain to be defined.
Resumo:
Momentary configurations of long polymers at thermal equilibrium usually deviate from spherical symmetry and can be better described, on average, by a prolate ellipsoid. The asphericity and nature of asphericity (or prolateness) that describe these momentary ellipsoidal shapes of a polymer are determined by specific expressions involving the three principal moments of inertia calculated for configurations of the polymer. Earlier theoretical studies and numerical simulations have established that as the length of the polymer increases, the average shape for the statistical ensemble of random configurations asymptotically approaches a characteristic universal shape that depends on the solvent quality. It has been established, however, that these universal shapes differ for linear, circular, and branched chains. We investigate here the effect of knotting on the shape of cyclic polymers modeled as random isosegmental polygons. We observe that random polygons forming different knot types reach asymptotic shapes that are distinct from the ensemble average shape. For the same chain length, more complex knots are, on average, more spherical than less complex knots.
Resumo:
For accurate and quantitative immunohistochemical localization of antigens it is crucial to know the solubility of tissue proteins and their degree of loss during processing. In this study we focused on the solubility of several cytoskeletal proteins in cat brain tissue at various ages and their loss during immunohistochemical procedures. We further examined whether fixation affected either solubility or immunocytochemical detectability of several cytoskeletal proteins. An assay was designed to measure the solubility of cytoskeletal proteins in cryostat sections. Quantity and quality of proteins lost or remaining in tissue were measured and analyzed by electrophoresis and immunoblots. Most microtubule proteins were found to be soluble in unfixed and alcohol fixed tissues. Furthermore, the microtubule proteins remaining in the tissue had a changed cellular distribution. In contrast, brain spectrin and all three neurofilament subunits were insoluble and remained in the tissue, allowing their immunocytochemical localization in alcohol-fixed tissue. Synapsin I, a protein associated with the spectrin cytoskeleton, was soluble, and aldehyde fixation is advised for its immunohistochemical localization. With aldehyde fixation, the immunoreactivity of some antibodies against neurofilament proteins was reduced in axons unveiling novel immunogenic sites in nuclei that may represent artifacts of fixation. In conclusion, protein solubility and the effects of fixation are influential factors in cytoskeletal immunohistochemistry, and should be considered before assessments for a quantitative distribution are made.
Resumo:
Sequence homologies suggest that the Bacillus subtilis 168 tagO gene encodes UDP-N-acetylglucosamine:undecaprenyl-P N-acetylglucosaminyl 1-P transferase, the enzyme responsible for catalysing the first step in the synthesis of the teichoic acid linkage unit, i.e. the formation of undecaprenyl-PP-N-acetylglucosamine. Inhibition of tagO expression mediated by an IPTG-inducible P(spac) promoter led to the development of a coccoid cell morphology, a feature characteristic of mutants blocked in teichoic acid synthesis. Indeed, analyses of the cell-wall phosphate content, as well as the incorporation of radioactively labelled precursors, revealed that the synthesis of poly(glycerol phosphate) and poly(glucosyl N-acetylgalactosamine 1-phosphate), the two strain 168 teichoic acids known to share the same linkage unit, was affected. Surprisingly, under phosphate limitation, deficiency of TagO precludes the synthesis of teichuronic acid, which is normally induced under these conditions. The regulatory region of tagO, containing two partly overlapping sigma(A)-controlled promoters, is similar to that of sigA, the gene encoding the major sigma factor responsible for growth. Here, the authors discuss the possibility that TagO may represent a pivotal element in the multi-enzyme complexes responsible for the synthesis of anionic cell-wall polymers, and that it may play one of the key roles in balanced cell growth.
Resumo:
Intraocular inflammation has been recognized as a major factor leading to blindness. Because tumor necrosis factor-alpha (TNF-alpha) enhances intraocular cytotoxic events, systemic anti-TNF therapies have been introduced in the treatment of severe intraocular inflammation, but frequent re-injections are needed and are associated with severe side effects. We have devised a local intraocular nonviral gene therapy to deliver effective and sustained anti-TNF therapy in inflamed eyes. In this study, we show that transfection of the ciliary muscle by plasmids encoding for three different variants of the p55 TNF-alpha soluble receptor, using electrotransfer, resulted in sustained intraocular secretion of the encoded proteins, without any detection in the serum. In the eye, even the shorter monomeric variant resulted in efficient neutralization of TNF-alpha in a rat experimental model of endotoxin-induced uveitis, as long as 3 months after transfection. A subsequent downregulation of interleukin (IL)-6 and iNOS and upregulation of IL-10 expression was observed together with a decreased rolling of inflammatory cells in anterior segment vessels and reduced infiltration within the ocular tissues. Our results indicate that using a nonviral gene therapy strategy, the local self-production of monomeric TNF-alpha soluble receptors induces a local immunomodulation enabling the control of intraocular inflammation.
Resumo:
We use numerical simulations to investigate how the chain length and topology of freely fluctuating knotted polymer rings affect their various spatial characteristics such as the radius of the smallest sphere enclosing momentary configurations of simulated polymer chains. We describe how the average value of a characteristic changes with the chain size and how this change depends on the topology of the modeled polymers. Although the scaling profiles of a spatial characteristic for distinct knot types do not intersect (at least, in the range of our data), the profiles for nontrivial knots intersect the corresponding profile obtained for phantom polymers, i.e., those that are free to explore all available topological states. For each knot type, this point of intersection defines its equilibrium length with respect to the spatial characteristic. At this chain length, a polymer forming a given knot type will not tend to increase or decrease. on average, the value of the spatial characteristic when the polymer is released from its topological constraint. We show interrelations between equilibrium lengths defined with respect to spatial characteristics of different character and observe that they are related to the lengths of ideal geometric configurations of the corresponding knot types.
Resumo:
The feline immunodeficiency virus (FIV) targets activated CD4-positive helper T cells preferentially, inducing an AIDS-like immunodeficiency in its natural host species, the domestic cat. The primary receptor for FIV is CD134, a member of the tumour necrosis factor receptor superfamily (TNFRSF) and all primary viral strains tested to date use CD134 for infection. To investigate the effect of the natural ligand for CD134 on FIV infection, feline CD134L was cloned and expressed in soluble forms. However, in contrast to murine or human CD134L, soluble feline CD134L (sCD134L) did not bind to CD134. Receptor-binding activity was restored by enforced covalent trimerisation following the introduction of a synthetic trimerisation domain from tenascin (TNC). Feline and human TNC-CD134Ls retained the species-specificity of the membrane-bound forms of the ligand while murine TNC-CD134L displayed promiscuous binding to feline, human or murine CD134. Feline and murine TNC-CD134Ls were antagonists of FIV infection; however, potency was both strain-specific and substrate-dependent, indicating that the modulatory effects of endogenous sCD134L, or exogenous CD134Lbased therapeutics, may vary depending on the viral strain.
Resumo:
Multimeric MHC I-peptide complexes containing phycoerythrin-streptavidin are widely used to detect and investigate antigen-specific CD8+ (and CD4+) T cells. Because such reagents are heterogeneous, we compared their binding characteristics with those of monodisperse dimeric, tetrameric and octameric complexes containing linkers of variable length and flexibility on Melan-A-specific CD8+ T cell clones and peripheral blood mononuclear cells (PBMC) from HLA-A*0201(+) melanoma patients. Striking binding differences were observed for different defined A2/Melan-A(26-35) complexes on T cells depending on their differentiation stage. In particular, short dimeric but not octameric A2/Melan-A(26-35) complexes selectively and avidly stained incompletely differentiated effector-memory T cells clones and populations expressing CD27 and CD28 and low levels of cytolytic mediators (granzymes and perforin). This subpopulation was found in PBMC from all six melanoma patients analyzed and proliferated on peptide stimulation with only modest phenotypic changes. By contrast influenza matrix(58-66) -specific CD8+ PBMC from nine HLA-A*0201(+) healthy donors were efficiently stained by A2/Flu matrix(58-61) multimers, but not dimer and upon peptide stimulation proliferated and differentiated from memory into effector T cells. Thus PBMC from melanoma patients contain a differentiation defective sub-population of Melan-A-specific CD8+ T cells that can be selectively and efficiently stained by short dimeric A2/Melan- A(26-35) complexes, which makes them directly accessible for longitudinal monitoring and further investigation.
Resumo:
The first aim of this study was to assess the diagnostic performance of presepsin (sCD14-ST) in postmortem serum from femoral blood compared to procalcitonin (PCT) to detect sepsis-related fatalities. The second aim was to compare sCD14-ST levels found in postmortem serum to the values in pericardial fluid to investigate the usefulness of the latter as an alternative biological fluid. Two study groups were formed, a sepsis-related fatalities group and a control group. Radiology (unenhanced CT scans and postmortem angiographies), autopsies, histology, neuropathology, and toxicology as well as other postmortem biochemistry investigations were performed in all cases. Microbiological investigations on right cardiac blood were carried out exclusively in septic cases. The results of this study indicated that postmortem serum PCT and sCD14-ST levels, individually considered, allowed septic cases to be identified. Even though increases in both PCT and sCD14-ST concentrations were observed in the control cases, coherent PCT and sCD14-ST results in cases with suspected sepsis allowed the diagnosis to be confirmed. Conversely, no relevant correlation was identified between postmortem serum and pericardial fluid sCD14-ST levels in either the septic or control groups.
Resumo:
A strategy to improve the immunogenicity of candidate vaccines is to trigger the innate immune system. Triggering of CD40 at the surface of dendritic cells (DC) is essential in the induction of an efficient immune response. Although CD40 agonist antibodies have been shown to be potent inducers of immune responses in experimental models, serious safety concerns have been raised for their use in humans. In addition, the production of soluble functional CD40 ligand has been challenging and the soluble form existing so far is not developed anymore. Here, we have evaluated the potency of a new soluble form of hexameric CD40 ligand (sCD40L) to serve as an adjuvant for anti-viral T cell responses. sCD40L was able to activate human DC and to enhance virus-specific memory T cell responses. These results demonstrate that this soluble form of CD40 ligand may serve as an adjuvant for T cell response and thus provide the rationale for its potential use in T cell based vaccine strategies.