3 resultados para SMA, Skid resistance, texture, Contact Area, RTM
em Université de Lausanne, Switzerland
Resumo:
Abstract : Textural division of a mineral in pyramids, with their apices located at the centre of the mineral and their bases corresponding to the mineral faces is called textural sector zoning. Textural sector zoning is observed in many metamorphic minerals like andalousite and garnet. Garnets found in the graphite rich black shales of the Mesozoic cover of the Gotthard Massif display textural sector zoning. The morphology of this sector zoning is not the same in different types of black shales observed in the Nufenen pass area. Garnets in foliated black shales display a well developed sector zoning while garnets found in cm-scale layered black shales display well developed sectors in the direction of the schistosity plane. This sector zoning is always associated with up to 30μm sized birefringent lamellae emanating radial from the sector boundaries. They alternate with isotrope lamellae. The garnet forming reaction was determined using singular value decomposition approach and results compared to thermodynamic calculations. It is of the form chl + mu + cc + cld = bt + fds + ank + gt + czo and is similar in both layered and foliated black shales. The calculated X(O) is close to 0.36 and does not significantly vary during the metamorphic history of the rock. This corresponds to X CO2, X CH4, and X H2O BSE imaging of garnets on oriented-cuts revealed that the orientation of the lamellae found within the sectors is controlled by crystallography. BSE imaging and electron microprobe analysis revealed that these lamellae are calcium rich compared to the isotropic lamellae. The addition of Ca to an almandine rich garnet causes a small distortion of the X site and potentially, ordering. Ordered and disordered garnet might have very similar free energies for this composition. Hence, two garnets with different composition can be precipitated with minor overstepping of the reaction. It is enough that continued nucleation of a new garnet layer slightly prefers the same structure to assure a fiber-like growth of both garnet compositions side by side. This hypothesis is in agreement with the thermodynamic properties of the garnet solid solution described in the literature and could explain the textures observed in garnets with these compositions. To understand the differences in sector zoning morphology, and crystal growth kinetics, crystal size distribution were determined in several samples using 2D spatial analysis of slab surfaces. The same nucleation rate law was chosen for all cases. Different growth rate law for non-layered black shales and layered black shales were used. Garnet in layered black shales grew according to a growth rate law of the form R=kt ½. The transport of nutrient is the limiting factor. Transport will occur preferentially on the schistosity planes. The shapes of the garnets in such rocks are therefore ovoid with the longest axis parallel to the schistosity planes. Sector zoning is less developed with sectors present only parallel to the schistosity planes. Garnet in non-layered blackshales grew according to a growth rate law of the form R=kt. The limiting factor is the attachment at the surface of the garnet. Garnets in these rocks will display a well developed sector zoning in all directions. The growth rate law is thus influenced by the texture of the rock. It favours or hinders the transport of nutrient to the mineral surface. Résumé : La zonation sectorielle texturale consiste en la division d'un cristal en pyramides dont les sommets sont localisés au centre du minéral. La base de ces pyramides correspond aux faces du minéral. Ce type de zonation est fréquemment observé dans les minéraux métamorphiques tels que l'andalousite ou le grenat. Les grenats présents dans les marnes riches en graphites de la couverture Mésozoïque du Massif du Gotthard présent une zonation sectorielle texturale. La morphologie de cette zonation n'est pas la même dans les marnes litées et dans les marnes foliées. Les grenats des marnes foliées montrent des secteurs bien développés dans 3 directions. Les grenats des marnes litées montrent des secteurs développés uniquement dans la direction des plans de schistosité. Cette zonation sectorielle est toujours associée à des lamelles biréfringentes de quelques microns de large qui partent de la limite des secteurs et qui sont perpendiculaires aux faces du grenat. Ces lamelles alternent avec des lamelles isotropes. La réaction de formation du grenat a été déterminée par calcul matriciel et thermodynamique. La réaction est de la forme chl + mu + cc + cld= bt + fds + ank + gt + czo. Elle est similaire dans les roches litées et dans les roches foliées. L'évaluation des conditions fluides montrent que le X(O) est proche de 0.36 et ne change pas de façon significative durant l'histoire métamorphique de la roche. Des images BSE sur des coupes orientées ont révélé que l'orientation de lamelles biréfringentes est contrôlée parla crystallographie. La comparaison des analyses à la microsonde électronique et des images BSE révèle également que les lamelles biréfringentes sont plus riches en calcium que les lamelles isotropes. L'addition de calcium va déformer légèrement le site X et ainsi créer un ordre sur ce site. L'énergie interne d'un grenat ordré et d'un grenat désordonné sont suffisamment proches pour qu'un léger dépassement de l'énergie de la réaction de formation permette la coexistence des 2 types de grenat dans le même minéral. La formation de lamelles est expliquée par le fait qu'un grenat préférera la même structure. Ces observations sont en accord avec la thermodynamique des solutions solides du grenat et permet d'expliquer les structures similaires observées dans des grenats provenant de lithologies différentes. Une étude de la distribution des tailles des grenats et une modélisation de la croissance a permis de mettre en évidence 2 mécanismes de croissance différents suivant la texture de la roche. Dans les 2 cas, la loi de nucléation est la même. Dans les roches litées, la loi de croissance est de forme R=kt½. Le transport des nutriments est le facteur limitant. Ce transport a lieu préférentiellement dans la direction des niveaux de schistosité. Les grenats ont une forme légèrement allongée car la croissance des secteurs est facilitée sur les niveaux de schistosité. La croissance des grenats dans les roches foliées suit une loi de croissance de la forme R=kt. Les seuls facteurs limitant la croissance sont les processus d'attachement à la surface du grenat. La loi de croissance de ces grenats est donc contrainte par la texture de la roche. Cela se marque par des différences dans la morphologie de la zonation sectorielle.
Resumo:
The geodynamic forces acting in the Earth's interior manifest themselves in a variety of ways. Volcanoes are amongst the most impressive examples in this respect, but like with an iceberg, they only represent the tip of a more extensive system hidden underground. This system consists of a source region where melt forms and accumulates, feeder connections in which magma is transported towards the surface, and different reservoirs where it is stored before it eventually erupts to form a volcano. A magma represents a mixture of melt and crystals. The latter can be extracted from the source region, or form anywhere along the path towards their final crystallization place. They will retain information of the overall plumbing system. The host rocks of an intrusion, in contrast, provide information at the emplacement level. They record the effects of thermal and mechanical forces imposed by the magma. For a better understanding of the system, both parts - magmatic and metamorphic petrology - have to be integrated. I will demonstrate in my thesis that information from both is complementary. It is an iterative process, using constraints from one field to better constrain the other. Reading the history of the host rocks is not always straightforward. This is shown in chapter two, where a model for the formation of clustered garnets observed in the contact aureole is proposed. Fragments of garnets, older than the intrusive rocks are overgrown by garnet crystallizing due to the reheating during emplacement of the adjacent pluton. The formation of the clusters is therefore not a single event as generally assumed but the result of a two-stage process, namely the alteration of the old grains and the overgrowth and amalgamation of new garnet rims. This makes an important difference when applying petrological methods such as thermobarometry, geochronology or grain size distributions. The thermal conditions in the aureole are a strong function of the emplacement style of the pluton. therefore it is necessary to understand the pluton before drawing conclusions about its aureole. A study investigating the intrusive rocks by means of field, geochemical, geochronologi- cal and structural methods is presented in chapter three. This provided important information about the assembly of the intrusion, but also new insights on the nature of large, homogeneous plutons and the structure of the plumbing system in general. The incremental nature of the emplacement of the Western Adamello tonalité is documented, and the existence of an intermediate reservoir beneath homogeneous plutons is proposed. In chapter four it is demonstrated that information extracted from the host rock provides further constraints on the emplacement process of the intrusion. The temperatures obtain by combining field observations with phase petrology modeling are used together with thermal models to constrain the magmatic activity in the immediate intrusion. Instead of using the thermal models to control the petrology result, the inverse is done. The model parameters were changed until a match with the aureole temperatures was obtained. It is shown, that only a few combinations give a positive match and that temperature estimates from the aureole can constrain the frequency of ancient magmatic systems. In the fifth chapter, the Anisotropy of Magnetic Susceptibility of intrusive rocks is compared to 3D tomography. The obtained signal is a function of the shape and distribution of ferromagnetic grains, and is often used to infer flow directions of magma. It turns out that the signal is dominated by the shape of the magnetic crystals, and where they form tight clusters, also by their distribution. This is in good agreement with the predictions made in the theoretical and experimental literature. In the sixth chapter arguments for partial melting of host rock carbonates are presented. While at first very surprising, this is to be expected when considering the prior results from the intrusive study and experiments from the literature. Partial melting is documented by compelling microstructures, geochemical and structural data. The necessary conditions are far from extreme and this process might be more frequent than previously thought. The carbonate melt is highly mobile and can move along grain boundaries, infiltrating other rocks and ultimately alter the existing mineral assemblage. Finally, a mineralogical curiosity is presented in chapter seven. The mineral assemblage magne§site and calcite is in apparent equilibrium. It is well known that these two carbonates are not stable together in the system Ca0-Mg0-Fe0-C02. Indeed, magnesite and calcite should react to dolomite during metamorphism. The presented explanation for this '"forbidden" assemblage is, that a calcite melt infiltrated the magnesite bearing rock along grain boundaries and caused the peculiar microstructure. This is supported by isotopie disequilibrium between calcite and magnesite. A further implication of partially molten carbonates is, that the host rock drastically looses its strength so that its physical properties may be comparable to the ones of the intrusive rocks. This contrasting behavior of the host rock may ease the emplacement of the intrusion. We see that the circle closes and the iterative process of better constraining the emplacement could start again. - La Terre est en perpétuel mouvement et les forces tectoniques associées à ces mouvements se manifestent sous différentes formes. Les volcans en sont l'un des exemples les plus impressionnants, mais comme les icebergs, les laves émises en surfaces ne représentent que la pointe d'un vaste système caché dans les profondeurs. Ce système est constitué d'une région source, région où la roche source fond et produit le magma ; ce magma peut s'accumuler dans cette région source ou être transporté à travers différents conduits dans des réservoirs où le magma est stocké. Ce magma peut cristalliser in situ et produire des roches plutoniques ou alors être émis en surface. Un magma représente un mélange entre un liquide et des cristaux. Ces cristaux peuvent être extraits de la source ou se former tout au long du chemin jusqu'à l'endroit final de cristallisation. L'étude de ces cristaux peut ainsi donner des informations sur l'ensemble du système magmatique. Au contraire, les roches encaissantes fournissent des informations sur le niveau d'emplacement de l'intrusion. En effet ces roches enregistrent les effets thermiques et mécaniques imposés par le magma. Pour une meilleure compréhension du système, les deux parties, magmatique et métamorphique, doivent être intégrées. Cette thèse a pour but de montrer que les informations issues de l'étude des roches magmatiques et des roches encaissantes sont complémentaires. C'est un processus itératif qui utilise les contraintes d'un domaine pour améliorer la compréhension de l'autre. Comprendre l'histoire des roches encaissantes n'est pas toujours aisé. Ceci est démontré dans le chapitre deux, où un modèle de formation des grenats observés sous forme d'agrégats dans l'auréole de contact est proposé. Des fragments de grenats plus vieux que les roches intru- sives montrent une zone de surcroissance générée par l'apport thermique produit par la mise en place du pluton adjacent. La formation des agrégats de grenats n'est donc pas le résultat d'un seul événement, comme on le décrit habituellement, mais d'un processus en deux phases, soit l'altération de vieux grains engendrant une fracturation de ces grenats, puis la formation de zone de surcroissance autour de ces différents fragments expliquant la texture en agrégats observée. Cette interprétation en deux phases est importante, car elle engendre des différences notables lorsque l'on applique des méthodes pétrologiques comme la thermobarométrie, la géochronologie ou encore lorsque l'on étudie la distribution relative de la taille des grains. Les conditions thermales dans l'auréole de contact dépendent fortement du mode d'emplacement de l'intrusion et c'est pourquoi il est nécessaire de d'abord comprendre le pluton avant de faire des conclusions sur son auréole de contact. Une étude de terrain des roches intrusives ainsi qu'une étude géochimique, géochronologique et structurale est présente dans le troisième chapitre. Cette étude apporte des informations importantes sur la formation de l'intrusion mais également de nouvelles connaissances sur la nature de grands plutons homogènes et la structure de système magmatique en général. L'emplacement incrémental est mis en évidence et l'existence d'un réservoir intermédiaire en-dessous des plutons homogènes est proposé. Le quatrième chapitre de cette thèse illustre comment utiliser l'information extraite des roches encaissantes pour expliquer la mise en place de l'intrusion. Les températures obtenues par la combinaison des observations de terrain et l'assemblage métamorphique sont utilisées avec des modèles thermiques pour contraindre l'activité magmatique au contact directe de cette auréole. Au lieu d'utiliser le modèle thermique pour vérifier le résultat pétrologique, une approche inverse a été choisie. Les paramètres du modèle ont été changés jusqu'à ce qu'on obtienne une correspondance avec les températures observées dans l'auréole de contact. Ceci montre qu'il y a peu de combinaison qui peuvent expliquer les températures et qu'on peut contraindre la fréquence de l'activité magmatique d'un ancien système magmatique de cette manière. Dans le cinquième chapitre, les processus contrôlant l'anisotropie de la susceptibilité magnétique des roches intrusives sont expliqués à l'aide d'images de la distribution des minéraux dans les roches obtenues par tomographie 3D. Le signal associé à l'anisotropie de la susceptibilité magnétique est une fonction de la forme et de la distribution des grains ferromagnétiques. Ce signal est fréquemment utilisé pour déterminer la direction de mouvement d'un magma. En accord avec d'autres études de la littérature, les résultats montrent que le signal est dominé par la forme des cristaux magnétiques, ainsi que par la distribution des agglomérats de ces minéraux dans la roche. Dans le sixième chapitre, une étude associée à la fusion partielle de carbonates dans les roches encaissantes est présentée. Si la présence de liquides carbonatés dans les auréoles de contact a été proposée sur la base d'expériences de laboratoire, notre étude démontre clairement leur existence dans la nature. La fusion partielle est documentée par des microstructures caractéristiques pour la présence de liquides ainsi que par des données géochimiques et structurales. Les conditions nécessaires sont loin d'être extrêmes et ce processus pourrait être plus fréquent qu'attendu. Les liquides carbonatés sont très mobiles et peuvent circuler le long des limites de grain avant d'infiltrer d'autres roches en produisant une modification de leurs assemblages minéralogiques. Finalement, une curiosité minéralogique est présentée dans le chapitre sept. L'assemblage de minéraux de magnésite et de calcite en équilibre apparent est observé. Il est bien connu que ces deux carbonates ne sont pas stables ensemble dans le système CaO-MgO-FeO-CO.,. En effet, la magnésite et la calcite devraient réagir et produire de la dolomite pendant le métamorphisme. L'explication présentée pour cet assemblage à priori « interdit » est que un liquide carbonaté provenant des roches adjacentes infiltre cette roche et est responsable pour cette microstructure. Une autre implication associée à la présence de carbonates fondus est que la roche encaissante montre une diminution drastique de sa résistance et que les propriétés physiques de cette roche deviennent comparables à celles de la roche intrusive. Cette modification des propriétés rhéologiques des roches encaissantes peut faciliter la mise en place des roches intrusives. Ces différentes études démontrent bien le processus itératif utilisé et l'intérêt d'étudier aussi bien les roches intrusives que les roches encaissantes pour la compréhension des mécanismes de mise en place des magmas au sein de la croûte terrestre.
Resumo:
Repeated antimalarial treatment for febrile episodes and self-treatment are common in malaria-endemic areas. The intake of antimalarials prior to participating in an in vivo study may alter treatment outcome and affect the interpretation of both efficacy and safety outcomes. We report the findings from baseline plasma sampling of malaria patients prior to inclusion into an in vivo study in Tanzania and discuss the implications of residual concentrations of antimalarials in this setting. In an in vivo study conducted in a rural area of Tanzania in 2008, baseline plasma samples from patients reporting no antimalarial intake within the last 28 days were screened for the presence of 14 antimalarials (parent drugs or metabolites) using liquid chromatography-tandem mass spectrometry. Among the 148 patients enrolled, 110 (74.3%) had at least one antimalarial in their plasma: 80 (54.1%) had lumefantrine above the lower limit of calibration (LLC = 4 ng/mL), 7 (4.7%) desbutyl-lumefantrine (4 ng/mL), 77 (52.0%) sulfadoxine (0.5 ng/mL), 15 (10.1%) pyrimethamine (0.5 ng/mL), 16 (10.8%) quinine (2.5 ng/mL) and none chloroquine (2.5 ng/mL). The proportion of patients with detectable antimalarial drug levels prior to enrollment into the study is worrying. Indeed artemether-lumefantrine was supposed to be available only at government health facilities. Although sulfadoxine-pyrimethamine is only recommended for intermittent preventive treatment in pregnancy (IPTp), it was still widely used in public and private health facilities and sold in drug shops. Self-reporting of previous drug intake is unreliable and thus screening for the presence of antimalarial drug levels should be considered in future in vivo studies to allow for accurate assessment of treatment outcome. Furthermore, persisting sub-therapeutic drug levels of antimalarials in a population could promote the spread of drug resistance. The knowledge on drug pressure in a given population is important to monitor standard treatment policy implementation.