5 resultados para SHM-oriented Wireless Sensor Network
em Université de Lausanne, Switzerland
Resumo:
Purpose: In vitro studies in porcine eyes have demonstrated a good correlation between induced intraocular pressure variations and corneal curvature changes, using a contact lens with an embedded microfabricated strain gauge. Continuous 24 hour-intraocular pressure (IOP) monitoring to detect large diurnal fluctuation is currently an unmet clinical need. The aims of this study is to evaluate precision of signal transmission and biocompatibility of 24 hour contact lens sensor wear (SENSIMED Triggerfish®) in humans. Methods: After full eye examination in 10 healthy volunteers, a 8.7 mm radius contact lens sensor and an orbital bandage containing a loop antenna were applied and connected to a portable recorder. Best corrected visual acuity and position, lubrication status and mobility of the sensor were assessed after 5 and 30 minutes, 4, 7 and 24 hours. Subjective comfort was scored and activities documented in a logbook. After sensor removal full eye examination was repeated, and the registration signal studied. Results: The comfort score was high and did not fluctuate significantly, except at the 7 hour-visit. The mobility of the contact lens was minimal but its lubrication remained good. Best corrected visual acuity was significantly reduced during the sensor wear and immediately after its removal. Three patients developed mild corneal staining. In all but one participant we obtained a registration IOP curve with visible ocular pulse amplitude. Conclusions: This 24 hour-trial confirmed the functionality and biocompatibility of SENSIMED Triggerfish® wireless contact lens sensor for IOP-fluctuation monitoring in volunteers. Further studies with a range of different contact lens sensor radii are indicated.
Resumo:
Tripping is considered a major cause of fall in older people. Therefore, foot clearance (i.e., height of the foot above ground during swing phase) could be a key factor to better understand the complex relationship between gait and falls. This paper presents a new method to estimate clearance using a foot-worn and wireless inertial sensor system. The method relies on the computation of foot orientation and trajectory from sensors signal data fusion, combined with the temporal detection of toe-off and heel-strike events. Based on a kinematic model that automatically estimates sensor position relative to the foot, heel and toe trajectories are estimated. 2-D and 3-D models are presented with different solving approaches, and validated against an optical motion capture system on 12 healthy adults performing short walking trials at self-selected, slow, and fast speed. Parameters corresponding to local minimum and maximum of heel and toe clearance were extracted and showed accuracy ± precision of 4.1 ± 2.3 cm for maximal heel clearance and 1.3 ± 0.9 cm for minimal toe clearance compared to the reference. The system is lightweight, wireless, easy to wear and to use, and provide a new and useful tool for routine clinical assessment of gait outside a dedicated laboratory.
Resumo:
The paper presents a novel method for monitoring network optimisation, based on a recent machine learning technique known as support vector machine. It is problem-oriented in the sense that it directly answers the question of whether the advised spatial location is important for the classification model. The method can be used to increase the accuracy of classification models by taking a small number of additional measurements. Traditionally, network optimisation is performed by means of the analysis of the kriging variances. The comparison of the method with the traditional approach is presented on a real case study with climate data.
Resumo:
The paper deals with the development and application of the methodology for automatic mapping of pollution/contamination data. General Regression Neural Network (GRNN) is considered in detail and is proposed as an efficient tool to solve this problem. The automatic tuning of isotropic and an anisotropic GRNN model using cross-validation procedure is presented. Results are compared with k-nearest-neighbours interpolation algorithm using independent validation data set. Quality of mapping is controlled by the analysis of raw data and the residuals using variography. Maps of probabilities of exceeding a given decision level and ?thick? isoline visualization of the uncertainties are presented as examples of decision-oriented mapping. Real case study is based on mapping of radioactively contaminated territories.
Resumo:
ABSTRACT: Massive synaptic pruning following over-growth is a general feature of mammalian brain maturation. Pruning starts near time of birth and is completed by time of sexual maturation. Trigger signals able to induce synaptic pruning could be related to dynamic functions that depend on the timing of action potentials. Spike-timing-dependent synaptic plasticity (STDP) is a change in the synaptic strength based on the ordering of pre- and postsynaptic spikes. The relation between synaptic efficacy and synaptic pruning suggests that the weak synapses may be modified and removed through competitive "learning" rules. This plasticity rule might produce the strengthening of the connections among neurons that belong to cell assemblies characterized by recurrent patterns of firing. Conversely, the connections that are not recurrently activated might decrease in efficiency and eventually be eliminated. The main goal of our study is to determine whether or not, and under which conditions, such cell assemblies may emerge out of a locally connected random network of integrate-and-fire units distributed on a 2D lattice receiving background noise and content-related input organized in both temporal and spatial dimensions. The originality of our study stands on the relatively large size of the network, 10,000 units, the duration of the experiment, 10E6 time units (one time unit corresponding to the duration of a spike), and the application of an original bio-inspired STDP modification rule compatible with hardware implementation. A first batch of experiments was performed to test that the randomly generated connectivity and the STDP-driven pruning did not show any spurious bias in absence of stimulation. Among other things, a scale factor was approximated to compensate for the network size on the ac¬tivity. Networks were then stimulated with the spatiotemporal patterns. The analysis of the connections remaining at the end of the simulations, as well as the analysis of the time series resulting from the interconnected units activity, suggest that feed-forward circuits emerge from the initially randomly connected networks by pruning. RESUME: L'élagage massif des synapses après une croissance excessive est une phase normale de la ma¬turation du cerveau des mammifères. L'élagage commence peu avant la naissance et est complété avant l'âge de la maturité sexuelle. Les facteurs déclenchants capables d'induire l'élagage des synapses pourraient être liés à des processus dynamiques qui dépendent de la temporalité rela¬tive des potentiels d'actions. La plasticité synaptique à modulation temporelle relative (STDP) correspond à un changement de la force synaptique basé sur l'ordre des décharges pré- et post- synaptiques. La relation entre l'efficacité synaptique et l'élagage des synapses suggère que les synapses les plus faibles pourraient être modifiées et retirées au moyen d'une règle "d'appren¬tissage" faisant intervenir une compétition. Cette règle de plasticité pourrait produire le ren¬forcement des connexions parmi les neurones qui appartiennent à une assemblée de cellules caractérisée par des motifs de décharge récurrents. A l'inverse, les connexions qui ne sont pas activées de façon récurrente pourraient voir leur efficacité diminuée et être finalement éliminées. Le but principal de notre travail est de déterminer s'il serait possible, et dans quelles conditions, que de telles assemblées de cellules émergent d'un réseau d'unités integrate-and¬-fire connectées aléatoirement et distribuées à la surface d'une grille bidimensionnelle recevant à la fois du bruit et des entrées organisées dans les dimensions temporelle et spatiale. L'originalité de notre étude tient dans la taille relativement grande du réseau, 10'000 unités, dans la durée des simulations, 1 million d'unités de temps (une unité de temps correspondant à une milliseconde), et dans l'utilisation d'une règle STDP originale compatible avec une implémentation matérielle. Une première série d'expériences a été effectuée pour tester que la connectivité produite aléatoirement et que l'élagage dirigé par STDP ne produisaient pas de biais en absence de stimu¬lation extérieure. Entre autres choses, un facteur d'échelle a pu être approximé pour compenser l'effet de la variation de la taille du réseau sur son activité. Les réseaux ont ensuite été stimulés avec des motifs spatiotemporels. L'analyse des connexions se maintenant à la fin des simulations, ainsi que l'analyse des séries temporelles résultantes de l'activité des neurones, suggèrent que des circuits feed-forward émergent par l'élagage des réseaux initialement connectés au hasard.