5 resultados para SEXUAL SELECTION

em Université de Lausanne, Switzerland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Male dominance hierarchies are usually linked to relative body size and to weapon size, that is, to determinants of fighting ability. Secondary sexual characters that are not directly used as weapons could still be linked to dominance if they reveal determination or overall health and vigour and hence, indirectly, fighting ability. We studied the mating behaviour of the minnow, Phoxinus phoxinus, a cyprinid fish in which males develop breeding tubercles during the spawning season. The function of these breeding tubercles is still not clear. Using microsatellite markers, we determined male reproductive success under controlled conditions. The minnows were territorial and quickly established a dominance hierarchy at the beginning of the spawning season. Dominance was strongly and positively linked to fertilization success. Although body size and number of breeding tubercles were not significantly correlated in our sample, both large males and males with many breeding tubercles were more dominant and achieved higher fertilization success than small males or males with few tubercles. We found multimale fertilization in most clutches, suggesting that sperm competition is important in this species. Females showed behaviour that may be linked to spawning decision, that is, male dominance might not be the only determinant of male reproductive success in minnows

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inbreeding avoidance is predicted to induce sex biases in dispersal. But which sex should disperse? In polygynous species, females pay higher costs to inbreeding and thus might be expected to disperse more, but empirical evidence consistently reveals male biases. Here, we show that theoretical expectations change drastically if females are allowed to avoid inbreeding via kin recognition. At high inbreeding loads, females should prefer immigrants over residents, thereby boosting male dispersal. At lower inbreeding loads, by contrast, inclusive fitness benefits should induce females to prefer relatives, thereby promoting male philopatry. This result points to disruptive effects of sexual selection. The inbreeding load that females are ready to accept is surprisingly high. In absence of search costs, females should prefer related partners as long as delta<r/(1+r) where r is relatedness and delta is the fecundity loss relative to an outbred mating. This amounts to fitness losses up to one-fifth for a half-sib mating and one-third for a full-sib mating, which lie in the upper range of inbreeding depression values currently reported in natural populations. The observation of active inbreeding avoidance in a polygynous species thus suggests that inbreeding depression exceeds this threshold in the species under scrutiny or that inbred matings at least partly forfeit other mating opportunities for males. Our model also shows that female choosiness should decline rapidly with search costs, stemming from, for example, reproductive delays. Species under strong time constraints on reproduction should thus be tolerant of inbreeding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hypothesis that extravagant ornaments signal parasite resistance has received support in several species for ornamented males but more rarely for ornamented females. However, recent theories have proposed that females should often be under sexual selection, and therefore females may signal the heritable capacity to resist parasites. We investigated this hypothesis in the socially monogamous barn owl, Tyto alba, in which females exhibit on average more and larger black spots on the plumage than males, and in which males were suggested to choose a mate with respect to female plumage spottiness. We hypothesized that the proportion of the plumage surface covered by black spots signals parasite resistance. In line with this hypothesis, we found that the ectoparasitic fly, Carnus hemapterus, was less abundant on young raised by more heavily spotted females and those flies were less fecund. In an experiment, where entire clutches were cross-fostered between nests, we found that the fecundity of the flies collected on nestlings was negatively correlated with the genetic mother's plumage spottiness. These results suggest that the ability to resist parasites covaries with the extent of female plumage spottiness. Among females collected dead along roads, those with a lot of black spots had a small bursa of Fabricius. Given that parasites bigger the development of this immune organ, this observation further suggests that more spotted females are usually less parasitized. The same analyses performed on male plumage spottiness all provided non-significant results. To our knowledge, this study is the first one showing that a heritable secondary sexual characteristics displayed by females reflects parasite resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One debated issues in evolutionary biology is, why in many species females mate with multiple males. Several hypotheses have been put forward, yet the benefits of multiple mating (here defined as mating with several males) remain unclear in many cases. The sperm sexual selection (SSS) hypothesis has been developed to account for the widespread occurrence of multiple mating in females. It argues that multiple mating by females may rapidly spread, when initially a small fraction of the females mate multiply, and if there is a heritable difference among males in one or several of the four characteristics: (1) the quantity of sperm they produce; (2) the success of their sperm in reaching and fertilizing an egg; (3) their ability to displace the sperm that females stored during previous mating; and (4) their ability to prevent any other male from subsequently introducing sperm (e.g., differential efficiency of mating plugs).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability of a population to adapt to changing environments depends critically on the amount and kind of genetic variability it possesses. Mutations are an important source of new genetic variability and may lead to new adaptations, especially if the population size is large. Mutation rates are extremely variable between and within species, and males usually have higher mutation rates as a result of elevated rates of male germ cell division. This male bias affects the overall mutation rate. We examined the factors that influence male mutation bias, and focused on the effects of classical life-history parameters, such as the average age at reproduction and elevated rates of sperm production in response to sexual selection and sperm competition. We argue that human-induced changes in age at reproduction or in sexual selection will affect male mutation biases and hence overall mutation rates. Depending on the effective population size, these changes are likely to influence the long-term persistence of a population.