115 resultados para SEPTIC SHOCK
em Université de Lausanne, Switzerland
Resumo:
OBJECTIVE: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," published in 2004. DESIGN: Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. METHODS: We used the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation (1) indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost) or clearly do not. Weak recommendations (2) indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. RESULTS: Key recommendations, listed by category, include early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7-10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure > or = 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for postoperative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7-9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B), targeting a blood glucose < 150 mg/dL after initial stabilization (2C); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); and a recommendation against the use of recombinant activated protein C in children (1B). CONCLUSIONS: There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.
Resumo:
OBJECTIVES: In patients with septic shock, circulating monocytes become refractory to stimulation with microbial products. Whether this hyporesponsive state is induced by infection or is related to shock is unknown. To address this question, we measured TNF alpha production by monocytes or by whole blood obtained from healthy volunteers (controls), from patients with septic shock, from patients with severe infection (bacterial pneumonia) without shock, and from patients with cardiogenic shock without infection. MEASUREMENTS: The numbers of circulating monocytes, of CD14+ monocytes, and the expression of monocyte CD14 and the LPS receptor, were assessed by flow cytometry. Monocytes or whole blood were stimulated with lipopolysaccharide endotoxin (LPS), heat-killed Escherichia coli or Staphylococcus aureus, and TNF alpha production was measured by bioassay. RESULTS: The number of circulating monocytes, of CD14+ monocytes, and the monocyte CD14 expression were significantly lower in patients with septic shock than in controls, in patients with bacterial pneumonia or in those with cardiogenic shock (p < 0.001). Monocytes or whole blood of patients with septic shock exhibited a profound deficiency of TNF alpha production in response to all stimuli (p < 0.05 compared to controls). Whole blood of patients with cardiogenic shock also exhibited this defect (p < 0.05 compared to controls), although to a lesser extent, despite normal monocyte counts and normal CD14 expression. CONCLUSIONS: Unlike patients with bacterial pneumonia, patients with septic or cardiogenic shock display profoundly defective TNF alpha production in response to a broad range of infectious stimuli. Thus, down-regulation of cytokine production appears to occur in patients with systemic, but not localised, albeit severe, infections and also in patients with non-infectious circulatory failure. Whilst depletion of monocytes and reduced monocyte CD14 expression are likely to be critical components of the hyporesponsiveness observed in patients with septic shock, other as yet unidentified factors are at work in this group and in patients with cardiogenic shock.
Resumo:
Rationale: Peroxisome proliferator activated receptor (PPAR)-beta/delta is a transcription factor that belongs to the PPAR nuclear hormone receptor family, but the role of PPAR-beta/delta in sepsis is unknown. Objectives: We investigated the role of PPAR-beta/delta in murine models of LPS-induced organ injury and dysfunction and cecal ligation and puncture (CLP)-induced polymicrobial sepsis. Methods: Wild-type (WT) and PPAR-beta/delta knockout (1(0) mice and C57BL/6 mice were subjected to LPS for 16 hours. C57BL/6 mice received the PPAR-beta/delta agonist GW0742 (0.03 mg/kg intravenously, 1 h after LPS) or GW0742 plus the PPAR-beta/delta antagonist GSK0660 (0.1 mg/kg intravenously, 30 min before LPS). CD-1 mice subjected to CLP received GW0742 or GW0742 plus GSK0660. Measurements and Main Results: In PPAR-beta/delta KO mice, endotoxemia exacerbated organ injury and dysfunction (cardiac, renal, and hepatic) and inflammation (lung) compared with WT mice. In C57BL/6 mice subjected to endotoxemia, GW0742 significantly (1) attenuated organ (cardiac and renal) dysfunction and inflammation (lung); (2) increased the phosphorylation of Akt and glycogen synthase kinase (GSK)-3 beta; (3) attenuated the increase in extracellular signal-regulated kinase (ERK)1/2 and signal transducer and activator of transcription (STAT)-3 phosphorylation; and (4) attenuated the activation of nuclear factor (NF)-kappa B and the expression of inducible nitric oxide synthase (iNOS). In CD-1 mice subjected to CLP, GW0742 improved 10-day survival. All the observed beneficial effects of GW0742 were attenuated by the PPAR-beta/delta antagonist GSK0660. Conclusions: PPAR-beta/delta protects against multiple organ injury and dysfunction, and inflammation caused by endotoxic shock and improves survival in polymicrobial sepsis by a mechanism that may involve activation of Akt and inhibition of GSK-3 beta and NF-kappa B.
Resumo:
Sirtuins (SIRT1-7) are NAD(+)-dependent histone deacetylases (HDACs) that play an important role in the control of metabolism and proliferation and the development of age-associated diseases like oncologic, cardiovascular and neurodegenerative diseases. Cambinol was originally described as a compound inhibiting the activity of SIRT1 and SIRT2, with efficient anti-tumor activity in vivo. Here, we studied the effects of cambinol on microbial sensing by mouse and human immune cells and on host innate immune responses in vivo. Cambinol inhibited the expression of cytokines (TNF, IL-1β, IL-6, IL-12p40, and IFN-γ), NO and CD40 by macrophages, dendritic cells, splenocytes and whole blood stimulated with a broad range of microbial and inflammasome stimuli. Sirtinol, an inhibitor of SIRT1 and SIRT2 structurally related to cambinol, also decreased macrophage response to TLR stimulation. On the contrary, selective inhibitors of SIRT1 (EX-527 and CHIC-35) and SIRT2 (AGK2 and AK-7) used alone or in combination had no inhibitory effect, suggesting that cambinol and sirtinol act by targeting more than just SIRT1 and SIRT2. Cambinol and sirtinol at anti-inflammatory concentrations also did not inhibit SIRT6 activity in in vitro assay. At the molecular level, cambinol impaired stimulus-induced phosphorylation of MAPKs and upstream MEKs. Going well along with its powerful anti-inflammatory activity, cambinol reduced TNF blood levels and bacteremia and improved survival in preclinical models of endotoxic shock and septic shock. Altogether, our data suggest that pharmacological inhibitors of sirtuins structurally related to cambinol may be of clinical interest to treat inflammatory diseases.
Resumo:
Recent studies have led to the discovery of a mediator that acts as an endogenous counter-regulator of glucocorticoid action within the immune system. Isolated as a product of anterior pituitary cells, this protein was found to have the sequence of macrophage migration inhibitory factor (MIF), one of the first cytokine activities to be described. Macrophages and T cells release MIF in response both to various inflammatory stimuli and upon incubation with low concentrations of glucocorticoids. The glucocorticoid-induced secretion of MIF is tightly regulated and decreases at high, anti-inflammatory steroid concentrations. Once secreted, MIF "overrides" the anti-inflammatory and immunosuppressive effects of steroids on macrophage and T-cell cytokine production. The physiological role of MIF thus appears to be to counter-balance steroid inhibition of the inflammatory response. Anti-MIF antibodies fully protect animals from experimentally induced gram-negative or gram-positive septic shock, an effect that may be the result of the increased anti-inflammatory effects of glucocorticoids after neutralization of endogenous MIF. Anti-MIF therapeutic strategies are presently under development and may prove to be a means to modulate cytokine production in septic shock as well as in other inflammatory disease states.
Resumo:
Aim: Gas6 is known to be elevated in sepsis, correlating with the severity of infection and organ failure. We aimed to investigate the performance of Gas6 plasma levels at admission to predict the risk of mortality in a cohort of septic patients.Methods: We used prospectively collected data and plasma samples from the 'Sepsis Cohorte Romande'. Gas6 level was measured by ELISA at admission and expressed in percentage relative to its level in a pool of normal plasma.Results: Non-survivors (n = 19) presented higher Gas6 levels than survivors (n = 78; median 287% vs. 158%, IQR 182 and 119 respectively; P = 0.0003). Gas6 correlated positively with different cytokine and was the best mortality predictor, as shown by the ROC curves area (Fig. 1). In patients with septic shock (n = 67), using 249% as a cut-off value, Gas6 measurement had a specificity of 81% and a sensitivity of 68% for predicting mortality. ROC curve area was 0.76. Positive and negative predictive values were 59% and 87%, respectively.Conclusion: Thus, Gas6 plasma level at admission might be a useful tool to predict mortality in patients with septic shock. Nevertheless, independent association of Gas6 level with mortality still needs to be assessed. Although Gas6 hold promise as an early sepsis marker, its precise implication in sepsis remains to be elucidated.
Resumo:
Aim: Gas6 is known to be elevated in sepsis, correlating with the severity of infection and¦organ failure. We aimed to investigate the performance of Gas6 plasma levels at¦admission to predict the risk of mortality in a cohort of septic patients.¦Methods: We used prospectively collected data and plasma samples from the "Sepsis¦Cohorte Romande". Gas6 level was measured by ELISA at admission and expressed in¦percentage relative to its level in a pool of normal plasma.¦Results: Non-survivors (n=21) presented higher Gas6 levels than survivors (n=73) (median¦258% vs 164%, IQR 194 and 117 respectively) (p=0.0027). Gas6 correlated positively with¦different cytokines and was the best mortality predictor, as shown by the ROC curves area.¦In patients with septic shock (n=66), using 249% as a cut-off value, Gas6 measurement¦had a specificity of 67% and a sensitivity of 81% for predicting mortality. ROC curve area¦was 0.75. Positive and negative predictive values were 57% and 87%, respectively.¦Conclusion: Thus, Gas6 plasma level at admission might be a useful tool to predict¦mortality in patients with septic shock. Although Gas6 hold promise as an early sepsis¦marker, its precise implication in sepsis remains to be elucidated. Our observation should¦be further investigated in larger prospective clinical trials.
Resumo:
OBJECTIVE: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, "Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock," published in 2004. DESIGN: Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. METHODS: We used the GRADE system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost), or clearly do not. Weak recommendations indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. RESULTS: Key recommendations, listed by category, include: early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures prior to antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7-10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure > or = 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for post-operative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7-9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B) targeting a blood glucose < 150 mg/dL after initial stabilization ( 2C ); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper GI bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include: greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); a recommendation against the use of recombinant activated protein C in children (1B). CONCLUSION: There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.
Resumo:
Résumé : Nous avons effectué une étude de cohorte examinant la survie de tous les patients qui ont présenté une sepsis sévère ou un choc septique aux soins intensifs de médecine et de chirurgie du CIIUV durant une période de 3 ans. Introduction: La sepsis sévère et le choc septique constituent la deuxième cause de mortalité dans les unités de soins intensifs non coronaires. La survie à long terme est mal connue. Nous avons comparé la survie à 28 jours de notre collectif avec les données de la littérature, examiné la survie à long terme des patients ayant survécus plus de 28 jours et identifié des paramètres prédictifs de la survie. Matériel et méthode : Nous avons classifié les patients ayant présenté un épisode septique rétrospectivement en sepsis sévère ou choc septique selon les critères de Bone (1). Les données cliniques et paracliniques ont été relevées au moment de l'épisode. Des courbes de survie uni- et multivariées ont été établies à 28 jours et à long terme chez ceux qui ont survécus plus de 28 jours, d'après les données de questionnaires envoyés aux médecins traitants. Résultats : Durant Ìa période de l'étude, 339 patients ont présenté un choc septique (169) ou une sepsis sévère (170). La mortalité à 28 jours a été de 33% (choc septique: 55%, sepsis sévère: 11.2%, p<10"5). Les données significativement associées à la mortalité à 28 jours dans l'analyse de régression multivariée selon Cox ont été le type d'épisode septique (choc septique vs. sepsis sévère, p=0.001), le «Acute Physiology Score» du score APACHE II (p=0.02) et le nombre de dysfonctions d'organes (plus de trois dysfunctions, p=0.04). 227 patients ont survécu plus de 28 jours et des données de suivi ont été obtenues chez 225. Le suivi moyen après 28 jours a été de 25.1 mois (5700 mois-patients). La mortalité globale de ces patients, extrapolée des courbes de Kaplan-Meyer, a été de l'ordre de 7% à 1 an et de 15% à 2 ans. Les données significativement associées à leur survie à long terme ont été les "chronic health points" du score APACHE II (p=0.02), l'âge (p=0.05) et le fait d'avoir subi une opération chirurgicale avant l'épisode septique (p=0.02). Conclusion : La mortalité à 28 jours de notre cohorte de patients s'est révélée comparable aux chiffres publiés. La survie à long terme des patients ayant survécu plus de 28 jours a été satisfaisante. Elle s'est révélée indépendante de la sévérité de l'épisode septique, mais dépendait plutôt des conditions de santé sous-jacentes.
Resumo:
Severe sepsis and septic shock are systemic manifestations of the host response to infection. Mortality remains high despite advances in pathophysiological knowledge. Hemodynamic and respiratory management is largely supportive, while early antibiotics administration and source of infection's control are crucial for patient outcome. We review the principles guiding the initial management of these patients in emergency situation.
Resumo:
The objective of the study was to evaluate the tissue oxygenation and hemodynamic effects of NOS inhibition in clinical severe septic shock. Eight patients with septic shock refractory to volume loading and high level of adrenergic support were prospectively enrolled in the study. Increasing doses of NOS inhibitors [N(G)-nitro-L-arginine-methyl ester (L-NAME) or N(G)-monomethyl-L-arginine (L-NMMA)] were administered as i.v. bolus until a peak effect = 10 mmHg on mean blood pressure was obtained or until side effects occurred. If deemed clinically appropriate, a continuous infusion of L-NAME was instituted and adrenergic support weaning attempted. The bolus administration of NOS inhibitors transiently increased mean blood pressure by 10 mm Hg in all patients. Seven out of eight patients received an L-NAME infusion, associated over 24 h with a progressive decline in cardiac index (P < 0.001) and an increase in systemic vascular resistance (P < 0.01). Partial or total adrenergic support weaning was rapidly possible in 6/8 patients. Oxygen transport decreased (P < 0.001), but oxygen consumption remained unchanged in those patients in whom it could be measured by indirect calorimetry (5/8). Blood lactate and the difference between tonometric gastric and arterial PCO2 remained unchanged. There were 4/8 ICU survivors. We conclude that nitric oxide synthase inhibition in severe septic shock was followed with a progressive correction of the vasoplegic hemodynamic disturbances with finally normalization of cardiac output and systemic vascular resistances without any demonstrable deterioration in tissue oxygenation.
Resumo:
In the late 19th century, it was already known that severe infections could be associated with cardiovascular collapse, a fact essentially attributed to cardiac failure. A major experimental work in the rabbit, published by Romberg and Pässler in 1899, shifted attention to disturbed peripheral vascular tone as the mechanism of hypotension in these conditions. In the first half of the 20th century, great progresses were made in the pathophysiologic understanding of hemorrhagic and traumatic shocks, while researchers devoted relatively little attention to septic shock. Progress in the hemodynamic understanding of septic shock resumed with the advent of critical care units. The hyperdynamic state was recognized in the late fifties and early sixties. The present short review ends with landmark studies by Max Harry Weil, demonstrating the importance of venous pooling, and John H. Siegel, which introduced the concept of deficient peripheral utilization of oxygen, inspiring later work on the microvascular disturbances of septic shock.