170 resultados para SEMISUPERVISED LEARNING
em Université de Lausanne, Switzerland
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.
Resumo:
Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.
Resumo:
We conducted an experiment to assess the use of olfactory traces for spatial orientation in an open environment in rats, Rattus norvegicus. We trained rats to locate a food source at a fixed location from different starting points, in the presence or absence of visual information. A single food source was hidden in an array of 19 petri dishes regularly arranged in an open-field arena. Rats were trained to locate the food source either in white light (with full access to distant visuospatial information) or in darkness (without any visual information). In both cases, the goal was in a fixed location relative to the spatial frame of reference. The results of this experiment revealed that the presence of noncontrolled olfactory traces coherent with the spatial frame of reference enables rats to locate a unique position as accurately in darkness as with full access to visuospatial information. We hypothesize that the olfactory traces complement the use of other orientation mechanisms, such as path integration or the reliance on visuospatial information. This experiment demonstrates that rats can rely on olfactory traces for accurate orientation, and raises questions about the establishment of such traces in the absence of any other orientation mechanism. Copyright 1998 The Association for the Study of Animal Behaviour.
Resumo:
L'objectif principal de ce travail était d'explorer les relations parent-enfant et les processus d'apprentissage familiaux associés aux troubles anxieux. A cet effet, des familles ayant un membre anxieux (la mère ou l'enfant) ont été comparées avec des familles n'ayant aucun membre anxieux. Dans une première étude, l'observation de l'interaction mère-enfant, pendant une situation standardisée de jeu, a révélé que les mères présentant un trouble panique étaient plus susceptibles de se montrer verbalement contrôlantes, critiques et moins sensibles aux besoins de l'enfant, que les mères qui ne présentaient pas de trouble panique. Une deuxième étude a examiné les perceptions des différents membres de la famille quant aux relations au sein de la famille et a indiqué que, par comparaison aux adolescents non-anxieux, les adolescents anxieux étaient plus enclins à éprouver un sentiment d'autonomie individuelle diminué par rapport à leurs parents. Finalement, une troisième étude s'est intéressée à déterminer l'impact d'expériences d'apprentissage moins directes dans l'étiologie de l'anxiété. Les résultats ont indiqué que les mères présentant un trouble panique étaient plus enclines à s'engager dans des comportements qui maintiennent la panique et à impliquer leurs enfants dans ces comportements, que les mères ne présentant pas de trouble panique. En se basant sur des recherches antérieures qui ont établi une relation entre le contrôle parental, la perception de contrôle chez l'enfant et les troubles anxieux, le présent travail non seulement confirme ce lien mais propose également un modèle pour résumer l'état actuel des connaissances concernant les processus familiaux et le développement des troubles anxieux. Deux routes ont été suggérées par lesquelles l'anxiété pourrait être transmise de manière intergénérationnelle. Chacune de ces routes attribue un rôle important à la perception de contrôle chez l'enfant. L'idée est que lorsque les enfants présentent une prédisposition à interpréter le comportement de leurs parents comme hors de leur contrôle, ils seraient plus enclins à développer de l'anxiété. A ce titre, la perception du contrôle représenterait un tampon entre le comportement de contrôle/surprotection des parents et le trouble anxieux chez l'enfant. - The principal objective of the present work was to explore parent-child relationships and family learning processes associated with anxiety disorders. To this purpose, families with and without an anxious family member (mother or child) were compared. In a first study, observation of mother-child interaction, during a standard play situation, revealed that mothers with panic disorder were more likely to display verbal control and criticism, and less likely to display sensitivity toward their children than mothers without panic disorder. A second study examined family members' perceptions of family relationships and indicated that compared to non-anxious adolescents, anxious adolescents were more prone to experience a diminished sense of individual autonomy in relation to their parents. Finally a third study was interested in determining the effect of less direct learning experiences in the aetiology of anxiety. Results indicated that mothers with panic disorder were more likely to engage in panic-maintaining behaviour and to involve their children in this behaviour than mothers without panic disorder. Based on previous research showing a relationship between parental control, children's perception of control, and anxiety disorders, the present work not only further adds evidence to support this link but also proposes a model summarizing the current knowledge concerning family processes and the development of anxiety disorders. Two pathways have been suggested through which anxiety may be intergenerationally transmitted. Both pathways assign an important role to children's perception of control. The idea is that whenever children have a predisposition towards interpreting their parents' behaviour as beyond of their control, they may be more prone to develop anxiety. As such, perceived control may represent a buffer between parental overcontrolling/overprotective behaviours and childhood anxiety disorder.
Resumo:
This paper presents a semisupervised support vector machine (SVM) that integrates the information of both labeled and unlabeled pixels efficiently. Method's performance is illustrated in the relevant problem of very high resolution image classification of urban areas. The SVM is trained with the linear combination of two kernels: a base kernel working only with labeled examples is deformed by a likelihood kernel encoding similarities between labeled and unlabeled examples. Results obtained on very high resolution (VHR) multispectral and hyperspectral images show the relevance of the method in the context of urban image classification. Also, its simplicity and the few parameters involved make the method versatile and workable by unexperienced users.
Resumo:
Locating new wind farms is of crucial importance for energy policies of the next decade. To select the new location, an accurate picture of the wind fields is necessary. However, characterizing wind fields is a difficult task, since the phenomenon is highly nonlinear and related to complex topographical features. In this paper, we propose both a nonparametric model to estimate wind speed at different time instants and a procedure to discover underrepresented topographic conditions, where new measuring stations could be added. Compared to space filling techniques, this last approach privileges optimization of the output space, thus locating new potential measuring sites through the uncertainty of the model itself.
Resumo:
The aim of the present study was to assess the influence of local environmental olfactory cues on place learning in rats. We developed a new experimental design allowing the comparison of the use of local olfactory and visual cues in spatial and discrimination learning. We compared the effect of both types of cues on the discrimination of a single food source in an open-field arena. The goal was either in a fixed or in a variable location, and could be indicated by local olfactory and/or visual cues. The local cues enhanced the discrimination of the goal dish, whether it was in a fixed or in a variable location. However, we did not observe any overshadowing of the spatial information by the local olfactory or visual cue. Rats relied primarily on distant visuospatial information to locate the goal, neglecting local information when it was in conflict with the spatial information.
Resumo:
Knockout mice lacking the alpha-1b adrenergic receptor were tested in behavioral experiments. Reaction to novelty was first assessed in a simple test in which the time taken by the knockout mice and their littermate controls to enter a second compartment was compared. Then the mice were tested in an open field to which unknown objects were subsequently added. Special novelty was introduced by moving one of the familiar objects to another location in the open field. Spatial behavior and memory were further studied in a homing board test, and in the water maze. The alpha-1b knockout mice showed an enhanced reactivity to new situations. They were faster to enter the new environment, covered longer paths in the open field, and spent more time exploring the new objects. They reacted like controls to modification inducing spatial novelty. In the homing board test, both the knockout mice and the control mice seemed to use a combination of distant visual and proximal olfactory cues, showing place preference only if the two types of cues were redundant. In the water maze the alpha-1b knockout mice were unable to learn the task, which was confirmed in a probe trial without platform. They were perfectly able, however, to escape in a visible platform procedure. These results confirm previous findings showing that the noradrenergic pathway is important for the modulation of behaviors such as reaction to novelty and exploration, and suggest that this is mediated, at least partly, through the alpha-1b adrenergic receptors. The lack of alpha-1b adrenergic receptors in spatial orientation does not seem important in cue-rich tasks but may interfere with orientation in situations providing distant cues only.
Resumo:
The human auditory system is comprised of specialized but interacting anatomic and functional pathways encoding object, spatial, and temporal information. We review how learning-induced plasticity manifests along these pathways and to what extent there are common mechanisms subserving such plasticity. A first series of experiments establishes a temporal hierarchy along which sounds of objects are discriminated along basic to fine-grained categorical boundaries and learned representations. A widespread network of temporal and (pre)frontal brain regions contributes to object discrimination via recursive processing. Learning-induced plasticity typically manifested as repetition suppression within a common set of brain regions. A second series considered how the temporal sequence of sound sources is represented. We show that lateralized responsiveness during the initial encoding phase of pairs of auditory spatial stimuli is critical for their accurate ordered perception. Finally, we consider how spatial representations are formed and modified through training-induced learning. A population-based model of spatial processing is supported wherein temporal and parietal structures interact in the encoding of relative and absolute spatial information over the initial ∼300ms post-stimulus onset. Collectively, these data provide insights into the functional organization of human audition and open directions for new developments in targeted diagnostic and neurorehabilitation strategies.
Resumo:
Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.