28 resultados para SE-77 NMR

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by (13)C nuclear magnetic resonance (NMR) spectroscopy upon infusion of (13)C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-(13)C]glucose and (13)C enrichment in the brain metabolites was measured by (13)C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining (13)C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (V(TCA)) and neurotransmission rate (V(NT)) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial V(TCA) was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (V(PC)) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Sunitinib (SU) is a multitargeted tyrosine kinase inhibitor with antitumor and antiangiogenic activity. The objective of this trial was to demonstrate antitumor activity of continuous SU treatment in patients with hepatocellular carcinoma (HCC). PATIENTS AND METHODS: Key eligibility criteria included unresectable or metastatic HCC, no prior systemic anticancer treatment, measurable disease, and Child-Pugh class A or mild Child-Pugh class B liver dysfunction. Patients received 37.5 mg SU daily until progression or unacceptable toxicity. The primary endpoint was progression-free survival at 12 weeks (PFS12). RESULTS: Forty-five patients were enrolled. The median age was 63 years; 89% had Child-Pugh class A disease and 47% had distant metastases. PFS12 was rated successful in 15 patients (33%; 95% confidence interval, 20%-47%). Over the whole trial period, one complete response and a 40% rate of stable disease as the best response were achieved. The median PFS duration, disease stabilization duration, time to progression, and overall survival time were 1.5, 2.9, 1.5, and 9.3 months, respectively. Grade 3 and 4 adverse events were infrequent. None of the 33 deaths were considered drug related. CONCLUSION: Continuous SU treatment with 37.5 mg daily is feasible and has moderate activity in patients with advanced HCC and mild to moderately impaired liver dysfunction. Under this trial design (>13 PFS12 successes), the therapy is considered promising. This is the first trial describing the clinical effects of continuous dosing of SU in HCC patients on a schedule that is used in an ongoing, randomized, phase III trial in comparison with the current treatment standard, sorafenib (ClinicalTrials.gov identifier, NCT00699374).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Making the switch: Compounds 1 and 2 are used as metabolic markers for NMR detection. When neuronal cells switch to a glycolytic state, an uneven distribution of (13) C in the N-acetyl group results, thus giving a mixture of the metabolites 1 and 2. It is therefore possible to monitor flux through different metabolic pathways, such as glycolysis, the tricarboxylic acid cycle, and the hexosamine biosynthetic pathway, using a single molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neurochemical profile of the cortex develops in a region and time specific manner, which can be distorted by psychiatric and other neurological pathologies. Pre-clinical studies often involve experimental mouse models. In this study, we determined the neurochemical profile of C57BL/6 mice in a longitudinal study design to provide a reference frame for the normal developing mouse cortex. Using in vivo proton NMR spectroscopy at 14 T, we measured the concentrations of 18 metabolites in the anterior and posterior cortex on postnatal days (P) 10, 20, 30, 60 and 90. Cortical development was marked by alterations of highly concentrated metabolites, such as N-acetylaspartate, glutamate, taurine and creatine. Regional specificity was represented by early variations in the concentration of glutamine, aspartate and choline. In adult animals, regional concentration differences were found for N-acetylaspartate, creatine and myo-inositol. In this study, animals were exposed to recurrent isoflurane anaesthesia. Additional experiments showed that the latter was devoid of major effects on behaviour or cortical neurochemical profile. In conclusion, the high sensitivity and reproducibility of the measurements achieved at 14 T allowed us to identify developmental variations of cortical areas within the mouse cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While chronic hypoglycaemia has been reported to increase unidirectional glucose transport across the blood-brain barrier (BBB) and to increase GLUT1 expression at the endothelium, the effect on steady-state brain d-glucose and brain glycogen content is currently unknown. Brain glucose and glycogen concentrations were directly measured in vivo using localized 13C magnetic resonance spectroscopy (MRS) following 12-14 days of hypoglycaemia. Brain glucose content was significantly increased by 48%, which is consistent with an increase in the maximal glucose transport rate, Tmax, by 58% compared with the sham-treated animals. The localized 13C NMR measurements of brain glucose were directly validated by comparison with biochemically determined brain glucose content after rapid focused microwave fixation (1.4 s at 4 kW). Both in vivo MRS and biochemical measurements implied that brain glycogen content was not affected by chronic hypoglycaemia, consistent with brain glucose being a major factor controlling brain glycogen content. We conclude that the increased glucose transporter expression in chronic hypoglycaemia leads to increased brain glucose content at a given level of glycaemia. Such increased brain glucose concentrations can result in a lowered glycaemic threshold of counter-regulation observed in chronic hypoglycaemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutathione (GSH), a major redox regulator and anti-oxidant, is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients. The gene of the key GSH-synthesizing enzyme, glutamate-cysteine ligase, modifier (GCLM) subunit, is associated with schizophrenia, suggesting that the deficit in the GSH system is of genetic origin. Using the GCLM knock-out (KO) mouse model with 60% decreased brain GSH levels, we have shown that redox dysregulation results in abnormal brain morphology and function. Current theory holds that schizophrenia is a developmental disease involving progressive anatomical and functional brain pathology. Here, we used GCLM KO mice to investigate the impact of a genetically dysregulated redox system on the neurochemical profile of the developing brain. The anterior and posterior cortical neurochemical profile of male and female GCLM KO, heterozygous and wildtype mice was determined by localised in vivo 1H NMR spectroscopy at 14.1 T (Varian/Magnex spectrometer) on post-natal days 10, 20, 30, 60 and 90. We show, for the first time, (1) that high quality 1H NMR spectra can be acquired from early developing mouse brains and (2) that recurrent anaesthesia by itself when administered at the same developmental days has no adverse effects on brain metabolites nor on adult behaviour. (3) Most importantly, our results reveal genotype and age specific changes for a number of metabolites revealing insight into normal brain development and about the impact of genetic GSH dysregulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present strategies for chemical shift assignments of large proteins by magic-angle spinning solid-state NMR, using the 21-kDa disulfide-bond-forming enzyme DsbA as prototype. Previous studies have demonstrated that complete de novo assignments are possible for proteins up to approximately 17 kDa, and partial assignments have been performed for several larger proteins. Here we show that combinations of isotopic labeling strategies, high field correlation spectroscopy, and three-dimensional (3D) and four-dimensional (4D) backbone correlation experiments yield highly confident assignments for more than 90% of backbone resonances in DsbA. Samples were prepared as nanocrystalline precipitates by a dialysis procedure, resulting in heterogeneous linewidths below 0.2 ppm. Thus, high magnetic fields, selective decoupling pulse sequences, and sparse isotopic labeling all improved spectral resolution. Assignments by amino acid type were facilitated by particular combinations of pulse sequences and isotopic labeling; for example, transferred echo double resonance experiments enhanced sensitivity for Pro and Gly residues; [2-(13)C]glycerol labeling clarified Val, Ile, and Leu assignments; in-phase anti-phase correlation spectra enabled interpretation of otherwise crowded Glx/Asx side-chain regions; and 3D NCACX experiments on [2-(13)C]glycerol samples provided unique sets of aromatic (Phe, Tyr, and Trp) correlations. Together with high-sensitivity CANCOCA 4D experiments and CANCOCX 3D experiments, unambiguous backbone walks could be performed throughout the majority of the sequence. At 189 residues, DsbA represents the largest monomeric unit for which essentially complete solid-state NMR assignments have so far been achieved. These results will facilitate studies of nanocrystalline DsbA structure and dynamics and will enable analysis of its 41-kDa covalent complex with the membrane protein DsbB, for which we demonstrate a high-resolution two-dimensional (13)C-(13)C spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review covers two important techniques, high resolution nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), used to characterize food products and detect possible adulteration of wine, fruit juices, and olive oil, all important products of the Mediterranean Basin. Emphasis is placed on the complementary use of SNIF-NMR (site-specific natural isotopic fractionation nuclear magnetic resonance) and IRMS (isotope-ratio mass spectrometry) in association with chemometric methods for detecting the adulteration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The only currently available method to measure brain glycogen in vivo is 13C NMR spectroscopy. Incorporation of 13C-labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycogen absolute concentration in the rat brain by eliminating label turnover as variable. The approach is based on establishing an increased, constant 13C isotopic enrichment (IE). 13C-Glc infusion is then performed at the IE of brain glycogen. As glycogen IE cannot be assessed in vivo, we validated that it can be inferred from that of N-acetyl-aspartate IE in vivo: After [1-13C]-Glc ingestion, glycogen IE was 2.2 +/- 0.1 fold that of N-acetyl-aspartate (n = 11, R(2) = 0.77). After subsequent Glc infusion, glycogen IE equaled brain Glc IE (n = 6, paired t-test, p = 0.37), implying isotopic steady-state achievement and complete turnover of the glycogen molecule. Glycogen concentration measured in vivo by 13C NMR (mean +/- SD: 5.8 +/- 0.7 micromol/g) was in excellent agreement with that in vitro (6.4 +/- 0.6 micromol/g, n = 5). When insulin was administered, the stability of glycogen concentration was analogous to previous biochemical measurements implying that glycogen turnover is activated by insulin. We conclude that the entire glycogen molecule is turned over and that insulin activates glycogen turnover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently shown that at isotopic steady state (13)C NMR can provide a direct measurement of glycogen concentration changes, but that the turnover of glycogen was not accessible with this protocol. The aim of the present study was to design, implement and apply a novel dual-tracer infusion protocol to simultaneously measure glycogen concentration and turnover. After reaching isotopic steady state for glycogen C1 using [1-(13)C] glucose administration, [1,6-(13)C(2)] glucose was infused such that isotopic steady state was maintained at the C1 position, but the C6 position reflected (13)C label incorporation. To overcome the large chemical shift displacement error between the C1 and C6 resonances of glycogen, we implemented 2D gradient based localization using the Fourier series window approach, in conjunction with time-domain analysis of the resulting FIDs using jMRUI. The glycogen concentration of 5.1 +/- 1.6 mM measured from the C1 position was in excellent agreement with concomitant biochemical determinations. Glycogen turnover measured from the rate of label incorporation into the C6 position of glycogen in the alpha-chloralose anesthetized rat was 0.7 micromol/g/h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Full signal intensity (1)H-[(13)C] NMR spectroscopy, combining a preceding (13)C-editing block based on an inversion BISEP (B(1)-insensitive spectral editing pulse) with a spin-echo coherence-based localization, was developed and implemented at 14.1 T. (13)C editing of the proposed scheme was achieved by turning on and off the (13)C adiabatic full passage in the (13)C-editing block to prepare inverted and noninverted (13)C-coupled (1)H coherences along the longitudinal axis prior to localization. The novel (1)H-[(13)C] NMR approach was applied in vivo under infusion of the glia-specific substrate [2-(13)C] acetate. Besides a approximately 50% improvement in sensitivity, spectral dispersion was enhanced at 14.1 T, especially for J-coupled metabolites such as glutamate and glutamine. A more distinct spectral structure at 1.9-2.2 ppm(parts per million) was observed, e.g., glutamate C3 showed a doublet pattern in both simulated (1)H spectrum and in vivo (13)C-edited (1)H NMR spectra. Besides (13)C time courses of glutamate C4 and glutamine C4, the time courses of glutamate C3 and glutamine C3 obtained by (1)H-[(13)C] NMR spectroscopy were reported for the first time. Such capability should greatly improve the ability to study neuron-glial metabolism using (1)H-observed (13)C-edited NMR spectroscopy.