127 resultados para SCOTTISH MOUNTAIN LAKE
em Université de Lausanne, Switzerland
Resumo:
The deposition of Late Pleistocene and Holocene sediments in the high-altitude lake Meidsee (located at an altitude of 2661 m a.s.l. in the Southwestern Alps) strikingly coincided with global ice-sheet and mountain-glacier decay in the Alpine forelands and the formation of perialpine lakes. Radiocarbon ages of bottom-core sediments point out (pre-) Holocene ice retreat below 2700 m a.s.l., at about 16, 13, 10, and 9 cal. kyr BP. The Meidsee sedimentary record therefore provides information about the high-altitude Alpine landscape evolution since the Late Pleistocene/Holocene deglaciation in the Swiss Southwestern Alps. Prior to 5 cal. kyr BP, the C/N ratio and the isotopic composition of sedimentary organic matter (delta N-15(org), delta C-13(org)) indicate the deposition of algal-derived organic matter with limited input of terrestrial organic matter. The early Holocene and the Holocene climatic optimum (between 7.0 and 5.5 cal. kyr BP) were characterized by low erosion (decreasing magnetic susceptibility, chi) and high content of organic matter (C-org > 13 wt.%), enriched in C-13(org) (>-18 parts per thousand) with a low C/N (similar to 10) ratio, typical of modern algal matter derived from in situ production. During the late Holocene, there was a long-term increasing contribution of terrestrial organic matter into the lake (C/N > 11), with maxima between 2.4 and 0.9 cal. kyr BP. A major environmental change took place 800 years ago, with an abrupt decrease in the relative contribution of terrestrial organic material into the lake compared with aquatic organic material which subsequently largely dominated (C/N drop from 16 to 10). Nonetheless, this event was marked by a rise in soil erosion (chi), in nutrients input (N and P contents) and in anthropogenic lead deposition, suggesting a human disturbance of Alpine ecosystems 800 years ago. Indeed, this time period coincided with the migration of the Walser Alemannic people in the region, who settled at relatively high altitude in the Southwestern Alps for farming and maintaining Alpine passes.
Resumo:
Continental-scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced microclimatic variation could allow species to persist locally, and are ill-suited for assessment of species-specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high-resolution (ca. 100 m) species samples and data expressing four future climate scenarios. Projected habitat loss is greater for species distributed at higher elevations; depending on the climate scenario, we find 36-55% of alpine species, 31-51% of subalpine species and 19-46% of montane species lose more than 80% of their suitable habitat by 2070-2100. While our high-resolution analyses consistently indicate marked levels of threat to cold-adapted mountain florae across Europe, they also reveal unequal distribution of this threat across the various mountain ranges. Impacts on florae from regions projected to undergo increased warming accompanied by decreased precipitation, such as the Pyrenees and the Eastern Austrian Alps, will likely be greater than on florae in regions where the increase in temperature is less pronounced and rainfall increases concomitantly, such as in the Norwegian Scandes and the Scottish Highlands. This suggests that change in precipitation, not only warming, plays an important role in determining the potential impacts of climate change on vegetation.
Resumo:
OBJECTIVE: Exposure to altitude may lead to acute mountain sickness (AMS) in nonacclimatized individuals. We surveyed AMS prevalence and potential risk factors in trekkers crossing a 5400-m pass in Nepal and compared the results with those of 2 similar studies conducted 12 and 24 years earlier. METHODS: In April 2010, 500 surveys were distributed to English-speaking trekkers at 3500 m on their way to 5400 m, of which 332 (66%) surveys were returned complete. Acute mountain sickness was quantified with the Lake Louise Scoring System (LLSS, cutoff ≥3 and ≥5) and the Environmental Statistical Questionnaire III AMS-C score (ESQ-III, cutoff ≥0.7). We surveyed demographics, body mass index (BMI), smoking habit, rate of ascent, awareness of AMS, and acetazolamide use. RESULTS: Prevalence of AMS was 22%, 23%, and 48% (ESQ-III ≥0.7, LLSS ≥5, and LLSS ≥3, respectively) lower when compared with earlier studies. Risk factors for AMS were younger age, female sex, higher BMI, and smoking habit. Forty-two percent had elementary knowledge about the risk and prevention of AMS. Forty-four percent used acetazolamide. Trekkers took longer to climb from 3500 to 5400 m than in earlier studies. CONCLUSIONS: Prevalence of AMS continued to decline over a period of 24 years, likely as a result of slower ascent and increased use of acetazolamide. The AMS risk factors of younger age, female sex, and high BMI are consistent with prior studies. Awareness of risk and prevention of AMS remains low, indicating an opportunity to better educate trekkers and potentially further reduce AMS prevalence.
Resumo:
OBJECTIVE: Acute mountain sickness is a frequent and debilitating complication of high-altitude exposure, but there is little information on the prevalence and time course of acute mountain sickness in children and adolescents after rapid ascent by mechanical transportation to 3500 m, an altitude at which major tourist destinations are located throughout the world. METHODS: We performed serial assessments of acute mountain sickness (Lake Louise scores) in 48 healthy nonacclimatized children and adolescents (mean +/- SD age: 13.7 +/- 0.3 years; 20 girls and 28 boys), with no previous high-altitude experience, 6, 18, and 42 hours after arrival at the Jungfraujoch high-altitude research station (3450 m), which was reached through a 2.5-hour train ascent. RESULTS: We found that the overall prevalence of acute mountain sickness during the first 3 days at high altitude was 37.5%. Rates were similar for the 2 genders and decreased progressively during the stay (25% at 6 hours, 21% at 18 hours, and 8% at 42 hours). None of the subjects needed to be evacuated to lower altitude. Five subjects needed symptomatic treatment and responded well. CONCLUSION: After rapid ascent to high altitude, the prevalence of acute mountain sickness in children and adolescents was relatively low; the clinical manifestations were benign and resolved rapidly. These findings suggest that, for the majority of healthy nonacclimatized children and adolescents, travel to 3500 m is safe and pharmacologic prophylaxis for acute mountain sickness is not needed.
Resumo:
Rapport de synthèse :Grâce au développement de moyens de transport modernes, de plus en plus d'enfants et d'adolescents se rendent en haute altitude dans le cadre de leurs loisirs. Le mal aigu des montagnes est une complication fréquente des séjours en haute altitude. Ses symptômes en sont des maux de tête, une fatigue, des troubles du sommeil, des nausées et des vertiges. La vitesse d'ascension, |'attitude maximale atteinte, une susceptibilité individuelle ainsi qu'une acclimatation antérieure a l'attitude sont tous des facteurs influant sur le risque de développer un mal aigu des montagnes et sur sa sévérité. Bien que très fréquente chez l'adulte, nous ne possédions, au moment d'entreprendre |'étude faisant |'objet de cette thèse, que peu de données solides concernant la prévalence de cette affection chez l'enfant ainsi que sur son évolution au cours du temps. Cette étude a pour but de mesurer la prévalence du mal aigu des montagnes, et son évolution au cours du temps au sein d'un groupe d'enfants et d'adolescents dans des conditions contrôlées. C'est à dire en éliminant |'influence de facteurs confondants tels que l'importance de l'exercice physique fourni ou une différence dans la vitesse d'ascension. Pour ce faire nous avons évalué la présence de mal aigu des montagnes dans un groupe de 48 garçons et de filles âgés de 11 à 17 ans en bonne santé habituelle, n'ayant jamais séjourné en haute altitude au préalable. Afin d'évaluer la présence ou non de mal aigu des montagnes nous avons utilisé une version française du « Lake Louise Score >>. Les mesures furent effectuées 6,24 et 48 heures après |`arrivée à la station de recherche de la Jungfraujoch située à 3'450m. L'ascension a consisté en un trajet de train durant 2h30. Nos observations montrent que la prévalence du mal aigu des montagnes durant les 3 premiers jours ne dépasse jamais les 25%. Elle est similaire pour les deux sexes et diminue au cours du séjour. (17% après 24 heures, 8% après 48 heures) Aucun sujet n'a dû être évacué à une altitude inférieure, Cinq sujets ont eu besoin de recourir à un traitement symptomatique et y ont bien répondu Les résultats de cette étude démontrent que dans le groupe d'âge étudié, après une ascension rapide en haute altitude, la prévalence du mal aigu des montagnes est relativement faible, ses manifestations cliniques sont bénignes et, |lorsqu'' elles sont présentes, se résolvent rapidement. Ces observations suggèrent que pour la majorité des enfants et des adolescents en bonne santé et non habitués a |'attitude, un séjour en haute altitude ne présente pas de risque et une prophylaxie pharmacologique du mal aigu des montagnes n'est pas nécessaire.
Resumo:
In 1903, the eastern slope of Turtle Mountain (Alberta) was affected by a 30 M m3-rockslide named Frank Slide that resulted in more than 70 casualties. Assuming that the main discontinuity sets, including bedding, control part of the slope morphology, the structural features of Turtle Mountain were investigated using a digital elevation model (DEM). Using new landscape analysis techniques, we have identified three main joint and fault sets. These results are in agreement with those sets identified through field observations. Landscape analysis techniques, using a DEM, confirm and refine the most recent geology model of the Frank Slide. The rockslide was initiated along bedding and a fault at the base of the slope and propagated up slope by a regressive process following a surface composed of pre-existing discontinuities. The DEM analysis also permits the identification of important geological structures along the 1903 slide scar. Based on the so called Sloping Local Base Level (SLBL) an estimation was made of the present unstable volumes in the main scar delimited by the cracks, and around the south area of the scar (South Peak). The SLBL is a method permitting a geometric interpretation of the failure surface based on a DEM. Finally we propose a failure mechanism permitting the progressive failure of the rock mass that considers gentle dipping wedges (30°). The prisms or wedges defined by two discontinuity sets permit the creation of a failure surface by progressive failure. Such structures are more commonly observed in recent rockslides. This method is efficient and is recommended as a preliminary analysis prior to field investigation.
Resumo:
Background: Chronic mountain sickness (CMS), which is characterised by hypoxemia, erythrocytosis and pulmonary hypertension, is a major public health problem in high-altitude dwellers. The only existing treatment is descent to low altitude, an option that for social reasons almost never exists. Sleep disordered breathing may represent an underlying mechanism. We recently found that in mountaineers increasing the respiratory dead space markedly improves sleep disordered breathing. The aim of the present study was to assess the effects of this procedure on sleep disordered breathing in patients with CMS. Methods: In 10 male Bolivian high-altitude dwellers (mean ± SD age, 59 ± 9 y) suffering from CMS (haemoglobin >20 g/L) full night sleep recordings (Embletta, RespMed) were obtained in La Paz (3600 m). In random order, one night was spent with a 500 ml increase in dead space through a custom designed full face mask and the other night without it. Exclusion criteria were: secondary erythrocytosis, smoking, drug intake, acute infection, cardio- pulmonary or neurologic disease and travelling to low altitude in the preceding 6 months. Results: The major new finding was that added dead space dramatically improved sleep disordered breathing in patients suffering from CMS. The apnea/hypopnea index decreased by >50% (from 34.5 ± 25.0 to 16.8 ± 14.9, P = 0.003), the oxygen desaturation index decreased from 46.2 ± 23.0 to 27.2 ± 20.0 (P = 0.0004) and hypopnea index from 28.8 ± 20.9 to 16.3 ± 14.0 (P = 0.01), whereas nocturnal oxygen saturation increased from 79.8 ± 3.6 to 80.9 ± 3.0% (P = 0.009). The procedure was easily accepted and well tolerated. Conclusion: Here, we show for the very first time that an increase in respiratory dead space through a fitted mask dramatically improves nocturnal breathing in high-altitude dwellers suffering from CMS. We speculate that when used in the long-term, this procedure will improve erythrocytosis and pulmonary hypertension and offer an inexpensive and easily implementable treatment for this major public health problem.
Resumo:
In mountainous regions, climate warming is expected to shift species' ranges to higher altitudes. Evidence for such shifts is still mostly from revisitations of historical sites. We present recent (2001 to 2008) changes in vascular plant species richness observed in a standardized monitoring network across Europe's major mountain ranges. Species have moved upslope on average. However, these shifts had opposite effects on the summit floras' species richness in boreal-temperate mountain regions (+3.9 species on average) and Mediterranean mountain regions (-1.4 species), probably because recent climatic trends have decreased the availability of water in the European south. Because Mediterranean mountains are particularly rich in endemic species, a continuation of these trends might shrink the European mountain flora, despite an average increase in summit species richness across the region.
Resumo:
The 30 M m3 rockslide that occurred on the east face of Turtle Mountain in the Crowsnest Pass area (Alberta) in 1903 is one of the most famous landslides in the world. In this paper, the structural features of the South part of Turtle Mountain are investigated in order to understand the present-day scar morphology and to identify the most important failure mechanisms. The structural features were mapped using a high resolution digital elevation model (DEM) in order to have a large overview of the relevant structural features. At the same time, a field survey was carried out and small scale fractures were analyzed in different parts of southern Turtle Mountain in order to confirm the DEM analysis. Results allow to identify six main discontinuity sets that influence the Turtle Mountain morphology. These discontinuity sets were then used to identify the potential failure mechanisms affecting Third Peak and South Peak area.
Resumo:
Non-indigenous species can have strong impacts on biodiversity by affecting trophic relationships in their new environments. The piscivorous dice snake (Natrix tessellata) has been introduced to Geneva Lake, western Switzerland, where the endangered viperine snake (Natrix maura) is native. Local, dramatic declines in the viperine snake population might be associated with the appearance of the dice snake through dietary overlap between these 2 species, which mainly feed on bullhead (Cottus gobio). In response to this decline, a control program for dice snake was implemented in 2007 to reduce numbers of this introduced snake. In 2010, a new species of fish, the freshwater blenny (Salaria fluviatilis), which shares the same habitat as the bullhead, was introduced into Lake Geneva and has since reached high densities. We determined the impact of freshwater blenny on diet composition and body condition of dice snakes. In addition, we tested for effects of the control program on the body condition of dice snakes and viperine snakes. We collected 294 dice snakes between 2007 and 2013. Based on morphology and a genetic marker (cytochrome b gene), we determined the ®sh species contained in these snakes' stomachs. We found a drastic switch in dice snake diet following the arrival of freshwater blenny, as consumption of bullhead declined by 68% and was replaced by the blenny. In addition, the body condition of dice snakes increased significantly after the arrival of freshwater blenny. The body condition of both snake species was positively correlated with the number of dice snakes removed from the study area. This finding has important implications concerning the conservation of the endangered viperine snake, and suggests that the control program of dice snakes should be continued.
Resumo:
Acid mine drainage (AMD) from the Zn-Pb(-Ag-Bi-Cu) deposit of Cerro de Pasco (Central Peru) and waste water from a Cu-extraction plant has been discharged since 1981 into Lake Yanamate, a natural lake with carbonate bedrock. The lake has developed a highly acidic pH of similar to 1. Mean lake water chemistry was characterized by 16,775 mg/L acidity as CaCO(3), 4330 mg/L Fe and 29,250 mg/L SO(4). Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO(4)). The variations in the H and 0 isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI similar to 0.25) and anglesite (SI similar to 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI similar to 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI similar to -0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material (similar to 90 wt.% water) of pH similar to 1 with a total organic C content of up to 4.40 wet wt.% originated from the kerosene discharge of the Cu-extraction plant and had contaminant element concentrations similar to the lake water. Below the organic layer followed a layer of gypsum with pH 1.5, which overlaid the dissolving carbonate sediments of pH 5.3-7. In these two layers the contaminant elements were enriched compared to lake water in the sequence As < Pb approximate to Cu < Cd < Zn = Mn with increasing depth. This sequence of enrichment was explained by the following processes: (i) adsorption of As on Fe-hydroxides coating plant roots at low pH (up to 3326 mg/kg As), (ii) adsorption at increasing pH near the gypsum/calcite boundary (up to 1812 mg/kg Pb, 2531 mg/kg Cu. and 36 mg/kg Cd), and (iii) precipitation of carbonates (up to 5177 mg/kg Zn and 810 mg/kg Mn: all data corrected to a wet base). The infiltration rate was approximately equal to the discharge rate, thus gypsum and hydroxide precipitation had not resulted in complete clogging of the lake bedrocks. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
On December 4th 2007, a 3-Mm3 landslide occurred along the northwestern shore of Chehalis Lake. The initiation zone is located at the intersection of the main valley slope and the northern sidewall of a prominent gully. The slope failure caused a displacement wave that ran up to 38 m on the opposite shore of the lake. The landslide is temporally associated with a rain-on-snow meteorological event which is thought to have triggered it. This paper describes the Chehalis Lake landslide and presents a comparison of discontinuity orientation datasets obtained using three techniques: field measurements, terrestrial photogrammetric 3D models and an airborne LiDAR digital elevation model to describe the orientation and characteristics of the five discontinuity sets present. The discontinuity orientation data are used to perform kinematic, surface wedge limit equilibrium and three-dimensional distinct element analyses. The kinematic and surface wedge analyses suggest that the location of the slope failure (intersection of the valley slope and a gully wall) has facilitated the development of the unstable rock mass which initiated as a planar sliding failure. Results from the three-dimensional distinct element analyses suggest that the presence, orientation and high persistence of a discontinuity set dipping obliquely to the slope were critical to the development of the landslide and led to a failure mechanism dominated by planar sliding. The three-dimensional distinct element modelling also suggests that the presence of a steeply dipping discontinuity set striking perpendicular to the slope and associated with a fault exerted a significant control on the volume and extent of the failed rock mass but not on the overall stability of the slope.
Resumo:
1. Landscape modification is often considered the principal cause of population decline in many bat species. Thus, schemes for bat conservation rely heavily on knowledge about species-landscape relationships. So far, however, few studies have quantified the possible influence of landscape structure on large-scale spatial patterns in bat communities. 2. This study presents quantitative models that use landscape structure to predict (i) spatial patterns in overall community composition and (ii) individual species' distributions through canonical correspondence analysis and generalized linear models, respectively. A geographical information system (GIS) was then used to draw up maps of (i) overall community patterns and (ii) distribution of potential species' habitats. These models relied on field data from the Swiss Jura mountains. 3. Fight descriptors of landscape structure accounted for 30% of the variation in bat community composition. For some species, more than 60% of the variance in distribution could be explained by landscape structure. Elevation, forest or woodland cover, lakes and suburbs, were the most frequent predictors. 4. This study shows that community composition in bats is related to landscape structure through species-specific relationships to resources. Due to their nocturnal activities and the difficulties of remote identification, a comprehensive bat census is rarely possible, and we suggest that predictive modelling of the type described here provides an indispensable conservation tool.