6 resultados para S. pyogenes
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: The increasing number of completely sequenced bacterial genomes allows comparing their architecture and genetic makeup. Such new information highlights the crucial role of lateral genetic exchanges in bacterial evolution and speciation. RESULTS: Here we analyzed the twelve sequenced genomes of Streptococcus pyogenes by a naïve approach that examines the preferential nucleotide usage along the chromosome, namely the usage of G versus C (GC-skew) and T versus A (TA-skew). The cumulative GC-skew plot presented an inverted V-shape composed of two symmetrical linear segments, where the minimum and maximum corresponded to the origin and terminus of DNA replication. In contrast, the cumulative TA-skew presented a V-shape, which segments were interrupted by several steep slopes regions (SSRs), indicative of a different nucleotide composition bias. Each S. pyogenes genome contained up to nine individual SSRs, encompassing all described strain-specific prophages. In addition, each genome contained a similar unique non-phage SSR, the core of which consisted of 31 highly homologous genes. This core includes the M-protein, other mga-related factors and other virulence genes, totaling ten intrinsic virulence genes. In addition to a high content in virulence-related genes and to a peculiar nucleotide bias, this SSR, which is 47 kb-long in a M1GAS strain, harbors direct repeats and a tRNA gene, suggesting a mobile element. Moreover, its complete absence in a M-protein negative group A Streptococcus natural isolate demonstrates that it could be spontaneously lost, but in vitro deletion experiments indicates that its excision occurred at very low rate. The stability of this SSR, combined to its presence in all sequenced S. pyogenes sequenced genome, suggests that it results from an ancient acquisition. CONCLUSION: Thus, this non-phagic SSR is compatible with a pathogenicity island, acquired before S. pyogenes speciation. Its potential excision might bear relevance for vaccine development, because vaccines targeting M-protein might select for M-protein-negative variants that still carry other virulence determinants.
Resumo:
Point-of-care (POC) tests offer potentially substantial benefits for the management of infectious diseases, mainly by shortening the time to result and by making the test available at the bedside or at remote care centres. Commercial POC tests are already widely available for the diagnosis of bacterial and viral infections and for parasitic diseases, including malaria. Infectious diseases specialists and clinical microbiologists should be aware of the indications and limitations of each rapid test, so that they can use them appropriately and correctly interpret their results. The clinical applications and performance of the most relevant and commonly used POC tests are reviewed. Some of these tests exhibit insufficient sensitivity, and should therefore be coupled to confirmatory tests when the results are negative (e.g. Streptococcus pyogenes rapid antigen detection test), whereas the results of others need to be confirmed when positive (e.g. malaria). New molecular-based tests exhibit better sensitivity and specificity than former immunochromatographic assays (e.g. Streptococcus agalactiae detection). In the coming years, further evolution of POC tests may lead to new diagnostic approaches, such as panel testing, targeting not just a single pathogen, but all possible agents suspected in a specific clinical setting. To reach this goal, the development of serology-based and/or molecular-based microarrays/multiplexed tests will be needed. The availability of modern technology and new microfluidic devices will provide clinical microbiologists with the opportunity to be back at the bedside, proposing a large variety of POC tests that will allow quicker diagnosis and improved patient care.
Resumo:
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.
Resumo:
Les POCT (point of care tests) ont un grand potentiel d'utilisation en médecine infectieuse ambulatoire grâce à leur rapidité d'exécution, leur impact sur l'administration d'antibiotiques et sur le diagnostic de certaines maladies transmissibles. Certains tests sont utilisés depuis plusieurs années (détection de Streptococcus pyogenes lors d'angine, anticorps anti-VIH, antigène urinaire de S. pneumoniae, antigène de Plasmodium falciparum). De nouvelles indications concernent les infections respiratoires, les diarrhées infantiles (rotavirus, E. coli entérohémorragique) et les infections sexuellement transmissibles. Des POCT, basés sur la détection d'acides nucléiques, viennent d'être introduits (streptocoque du groupe B chez la femme enceinte avant l'accouchement et la détection du portage de staphylocoque doré résistant à la méticilline). POCT have a great potential in ambulatory infectious diseases diagnosis, due to their impact on antibiotic administration and on communicable diseases prevention. Some are in use for long (S. pyogenes antigen, HIV antibodies) or short time (S. pneumoniae antigen, P. falciparum). The additional major indications will be community-acquired lower respiratory tract infections, infectious diarrhoea in children (rotavirus, enterotoxigenic E. coli), and hopefully sexually transmitted infections. Easy to use, these tests based on antigen-antibody reaction allow a rapid diagnosis in less than one hour; the new generation of POCT relying on nucleic acid detection are just introduced in practice (detection of GBS in pregnant women, carriage of MRSA), and will be extended to many pathogens
Resumo:
Objectives: Total ankle replacement (TAR) is increasingly used for treatment of primary or posttraumatic arthritis of the ankle joint, if joint movement is intended to be preserved. Data on characteristics and treatment of ankle prosthetic joint infection (PJI) is limited and no validated therapeutic algorithm exist. Therefore, we analyzed all infections, which occurred in a cohort of implanted ankle prostheses during a 5-year-period.Methods: Between 06/2004 and 12/2008, all patients with an implanted ankle prosthesis at our institution were retrospectively reviewed. All patients were operated by the same surgical team. Ankle PJI was defined as visible purulence, acute inflammation on histopathology, sinus tract, or microbial growth in periprosthetic tissue or sonication fluid of the removed prosthesis. The surgery on the infected ankle prosthesis and the follow-up were performed by the surgical team, who implanted the prosthesis. A specialized septic team consisting of an orthopaedic surgeon and infectious diseases consultant were included in the treatment.Results: During the study period, 92 total ankle prostheses were implanted in 90 patients (mean age 61 years, range 28-80 years). 78 patients had posttraumatic arthritis, 11 rheumatoid arthritis and 3 other degenerative disorder. Ankle PJI occurred in 3 of 92 TAR (3.3%), occurring 1, 2 and 24 months after implantation; the causative organisms were Enterobacter cloacae, Streptococcus pyogenes and Staphylococcus epidermidis, respectively. The ankle prosthesis was removed in all infected patients, including debridement of the surrounding tissue was debrided and insertion of an antibiotic loaded spacer. Provisional arthrodesis was performed by external fixation in two patients and by plaster cast in one. A definitive ankle arthrodesis with a retrograde nail was performed 6 to 8 weeks after prosthesis removal. One patient needed a flap coverage. All 3 patients received intravenous antibiotic treatment for 2 weeks, followed by oral antibiotics for 4-6 weeks. At follow-up visit up to 18 months after start of treatment, all patients were without clinical or laboratory signs of infection.Conclusions: The infection incidence after TAR was 3.3%, which is slightly higher than reported after hip (<1%) or knee arthroplasty (<2%). A two-step approach consisting of removal of the infected prosthesis, combined with local and systemic antibiotic treatment, followed by definitive ankle arthrodesis shows good results. Larger patient cohort and longer follow-up evaluation is needed to define the optimal treatment approach for ankle PJI.