8 resultados para Síndrome de QT Prolongado
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: QT interval prolongation carries an increased risk of torsade de pointes and death. AIM: We sought to determine the prevalence of QT prolongation in medical inpatients and to identify determinants of this condition. METHODS: We enrolled consecutive patients who were admitted to the internal medicine ward and who had an electrocardiogram performed within 24 h of admission. We collected information on baseline patient characteristics and the use of QT-prolonging drugs. Two blinded readers manually measured the QT intervals. QT intervals were corrected for heart rate using the traditional Bazett formula and the linear regression-based Framingham formula. We used logistic regression to identify patient characteristics and drugs that were independently associated with QTc prolongation. RESULTS: Of 537 inpatients, 22.3% had a prolonged QTc based on the Bazett formula. The adjusted odds for QTc prolongation based on the Bazett correction were significantly higher in patients who had liver disease (OR 2.9, 95% CI: 1.5-5.6), hypokalaemia (OR 3.3, 95% CI: 1.9-5.6) and who were taking ≥1 QT-prolonging drug at admission (OR 1.7, 95% CI: 1.1-2.6). Overall, 50.8% of patients with QTc prolongation received additional QT-prolonging drugs during hospitalisation. CONCLUSIONS: The prevalence of QTc prolongation was high among medical inpatients but depended on the method used to correct for heart rate. The use of QT-prolonging drugs, hypokalaemia and liver disease increased the risk of QTc prolongation. Many patients with QTc prolongation received additional QT-prolonging drugs during hospitalisation, further increasing the risk of torsade de pointes and death.
Resumo:
ABSTRACT: BACKGROUND: Numerous structurally unrelated drugs, including antipsychotics, can prolong QT interval and trigger the acquired long QT syndrome (aLQTS). All of them are thought to act at the level of KCNH2, a subunit of the potassium channel. Although the QT-prolonging drugs are proscribed in the subjects with aLQTS, the individual response to diverse QT-prolonging drugs may vary substantially. CASE PRESENTATION: We report here a case of aLQTS in response to small doses of risperidone that was confirmed at three independent drug challenges in the absence of other QT-prolonging drugs. On the other hand, the patient did not respond with QT prolongation to some other antipsychotics. In particular, the administration of clozapine, known to be associated with higher QT-prolongation risk than risperidone, had no effect on QT-length. A detailed genetic analysis revealed no mutations or polymorphisms in KCNH2, KCNE1, KCNE2, SCN5A and KCNQ1 genes. CONCLUSIONS: Our observation suggests that some patients may display a selective aLQTS to a single antipsychotic, without a potassium channel-related genetic substrate. Contrasting with the idea of a common target of the aLQTS-triggerring drugs, our data suggests existence of an alternative target protein, which unlike the KCNH2 would be drug-selective.
Resumo:
BACKGROUND: The SCN5A gene encodes for the α-subunit of the cardiac sodium channel NaV1.5, which is responsible for the rapid upstroke of the cardiac action potential. Mutations in this gene may lead to multiple life-threatening disorders of cardiac rhythm or are linked to structural cardiac defects. Here, we characterized a large family with a mutation in SCN5A presenting with an atrioventricular conduction disease and absence of Brugada syndrome. METHOD AND RESULTS: In a large family with a high incidence of sudden cardiac deaths, a heterozygous SCN5A mutation (p.1493delK) with an autosomal dominant inheritance has been identified. Mutation carriers were devoid of any cardiac structural changes. Typical ECG findings were an increased P-wave duration, an AV-block I° and a prolonged QRS duration with an intraventricular conduction delay and no signs for Brugada syndrome. HEK293 cells transfected with 1493delK showed strongly (5-fold) reduced Na(+) currents with altered inactivation kinetics compared to wild-type channels. Immunocytochemical staining demonstrated strongly decreased expression of SCN5A 1493delK in the sarcolemma consistent with an intracellular trafficking defect and thereby a loss-of-function. In addition, SCN5A 1493delK channels that reached cell membrane showed gain-of-function aspects (slowing of the fast inactivation, reduction in the relative fraction of channels that fast inactivate, hastening of the recovery from inactivation). CONCLUSION: In a large family, congregation of a heterozygous SCN5A gene mutation (p.1493delK) predisposes for conduction slowing without evidence for Brugada syndrome due to a predominantly trafficking defect that reduces Na(+) current and depolarization force.
Resumo:
The long QT syndrome may be acquired or genetically determined. The syndrome is characterized by a prolonged QT interval and is associated with an increased risk of cardiac arrhythmia such as a torsade de pointe and death. Electrolytes disorders such as hypomagnesemia and hypokaliemia and several drugs may increase the risk to develop a long QT syndrome. The epidemiology, the aetiology, the diagnostic approach as well as the management options of an acquired QT prolongation is discussed and reviewed herein.
Resumo:
Methadone inhibits the cardiac potassium channel hERG and can cause a prolonged QT interval. Methadone is chiral but its therapeutic activity is mainly due to (R)-methadone. Whole-cell patch-clamp experiments using cells expressing hERG showed that (S)-methadone blocked the hERG current 3.5-fold more potently than (R)-methadone (IC50s (half-maximal inhibitory concentrations) at 37 degrees C: 2 and 7 microM). As CYP2B6 slow metabolizer (SM) status results in a reduced ability to metabolize (S)-methadone, electrocardiograms, CYP2B6 genotypes, and (R)- and (S)-methadone plasma concentrations were obtained for 179 patients receiving (R,S)-methadone. The mean heart-rate-corrected QT (QTc) was higher in CYP2B6 SMs (*6/*6 genotype; 439+/-25 ms; n=11) than in extensive metabolizers (non *6/*6; 421+/-25 ms; n=168; P=0.017). CYP2B6 SM status was associated with an increased risk of prolonged QTc (odds ratio=4.5, 95% confidence interval=1.2-17.7; P=0.03). This study reports the first genetic factor implicated in methadone metabolism that may increase the risk of cardiac arrhythmias and sudden death. This risk could be reduced by the administration of (R)-methadone.