35 resultados para Rural and Remote

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterizing the geological features and structures in three dimensions over inaccessible rock cliffs is needed to assess natural hazards such as rockfalls and rockslides and also to perform investigations aimed at mapping geological contacts and building stratigraphy and fold models. Indeed, the detailed 3D data, such as LiDAR point clouds, allow to study accurately the hazard processes and the structure of geologic features, in particular in vertical and overhanging rock slopes. Thus, 3D geological models have a great potential of being applied to a wide range of geological investigations both in research and applied geology projects, such as mines, tunnels and reservoirs. Recent development of ground-based remote sensing techniques (LiDAR, photogrammetry and multispectral / hyperspectral images) are revolutionizing the acquisition of morphological and geological information. As a consequence, there is a great potential for improving the modeling of geological bodies as well as failure mechanisms and stability conditions by integrating detailed remote data. During the past ten years several large rockfall events occurred along important transportation corridors where millions of people travel every year (Switzerland: Gotthard motorway and railway; Canada: Sea to sky highway between Vancouver and Whistler). These events show that there is still a lack of knowledge concerning the detection of potential rockfalls, making mountain residential settlements and roads highly risky. It is necessary to understand the main factors that destabilize rocky outcrops even if inventories are lacking and if no clear morphological evidences of rockfall activity are observed. In order to increase the possibilities of forecasting potential future landslides, it is crucial to understand the evolution of rock slope stability. Defining the areas theoretically most prone to rockfalls can be particularly useful to simulate trajectory profiles and to generate hazard maps, which are the basis for land use planning in mountainous regions. The most important questions to address in order to assess rockfall hazard are: Where are the most probable sources for future rockfalls located? What are the frequencies of occurrence of these rockfalls? I characterized the fracturing patterns in the field and with LiDAR point clouds. Afterwards, I developed a model to compute the failure mechanisms on terrestrial point clouds in order to assess the susceptibility to rockfalls at the cliff scale. Similar procedures were already available to evaluate the susceptibility to rockfalls based on aerial digital elevation models. This new model gives the possibility to detect the most susceptible rockfall sources with unprecented detail in the vertical and overhanging areas. The results of the computation of the most probable rockfall source areas in granitic cliffs of Yosemite Valley and Mont-Blanc massif were then compared to the inventoried rockfall events to validate the calculation methods. Yosemite Valley was chosen as a test area because it has a particularly strong rockfall activity (about one rockfall every week) which leads to a high rockfall hazard. The west face of the Dru was also chosen for the relevant rockfall activity and especially because it was affected by some of the largest rockfalls that occurred in the Alps during the last 10 years. Moreover, both areas were suitable because of their huge vertical and overhanging cliffs that are difficult to study with classical methods. Limit equilibrium models have been applied to several case studies to evaluate the effects of different parameters on the stability of rockslope areas. The impact of the degradation of rockbridges on the stability of large compartments in the west face of the Dru was assessed using finite element modeling. In particular I conducted a back-analysis of the large rockfall event of 2005 (265'000 m3) by integrating field observations of joint conditions, characteristics of fracturing pattern and results of geomechanical tests on the intact rock. These analyses improved our understanding of the factors that influence the stability of rock compartments and were used to define the most probable future rockfall volumes at the Dru. Terrestrial laser scanning point clouds were also successfully employed to perform geological mapping in 3D, using the intensity of the backscattered signal. Another technique to obtain vertical geological maps is combining triangulated TLS mesh with 2D geological maps. At El Capitan (Yosemite Valley) we built a georeferenced vertical map of the main plutonio rocks that was used to investigate the reasons for preferential rockwall retreat rate. Additional efforts to characterize the erosion rate were made at Monte Generoso (Ticino, southern Switzerland) where I attempted to improve the estimation of long term erosion by taking into account also the volumes of the unstable rock compartments. Eventually, the following points summarize the main out puts of my research: The new model to compute the failure mechanisms and the rockfall susceptibility with 3D point clouds allows to define accurately the most probable rockfall source areas at the cliff scale. The analysis of the rockbridges at the Dru shows the potential of integrating detailed measurements of the fractures in geomechanical models of rockmass stability. The correction of the LiDAR intensity signal gives the possibility to classify a point cloud according to the rock type and then use this information to model complex geologic structures. The integration of these results, on rockmass fracturing and composition, with existing methods can improve rockfall hazard assessments and enhance the interpretation of the evolution of steep rockslopes. -- La caractérisation de la géologie en 3D pour des parois rocheuses inaccessibles est une étape nécessaire pour évaluer les dangers naturels tels que chutes de blocs et glissements rocheux, mais aussi pour réaliser des modèles stratigraphiques ou de structures plissées. Les modèles géologiques 3D ont un grand potentiel pour être appliqués dans une vaste gamme de travaux géologiques dans le domaine de la recherche, mais aussi dans des projets appliqués comme les mines, les tunnels ou les réservoirs. Les développements récents des outils de télédétection terrestre (LiDAR, photogrammétrie et imagerie multispectrale / hyperspectrale) sont en train de révolutionner l'acquisition d'informations géomorphologiques et géologiques. Par conséquence, il y a un grand potentiel d'amélioration pour la modélisation d'objets géologiques, ainsi que des mécanismes de rupture et des conditions de stabilité, en intégrant des données détaillées acquises à distance. Pour augmenter les possibilités de prévoir les éboulements futurs, il est fondamental de comprendre l'évolution actuelle de la stabilité des parois rocheuses. Définir les zones qui sont théoriquement plus propices aux chutes de blocs peut être très utile pour simuler les trajectoires de propagation des blocs et pour réaliser des cartes de danger, qui constituent la base de l'aménagement du territoire dans les régions de montagne. Les questions plus importantes à résoudre pour estimer le danger de chutes de blocs sont : Où se situent les sources plus probables pour les chutes de blocs et éboulement futurs ? Avec quelle fréquence vont se produire ces événements ? Donc, j'ai caractérisé les réseaux de fractures sur le terrain et avec des nuages de points LiDAR. Ensuite, j'ai développé un modèle pour calculer les mécanismes de rupture directement sur les nuages de points pour pouvoir évaluer la susceptibilité au déclenchement de chutes de blocs à l'échelle de la paroi. Les zones sources de chutes de blocs les plus probables dans les parois granitiques de la vallée de Yosemite et du massif du Mont-Blanc ont été calculées et ensuite comparés aux inventaires des événements pour vérifier les méthodes. Des modèles d'équilibre limite ont été appliqués à plusieurs cas d'études pour évaluer les effets de différents paramètres sur la stabilité des parois. L'impact de la dégradation des ponts rocheux sur la stabilité de grands compartiments de roche dans la paroi ouest du Petit Dru a été évalué en utilisant la modélisation par éléments finis. En particulier j'ai analysé le grand éboulement de 2005 (265'000 m3), qui a emporté l'entier du pilier sud-ouest. Dans le modèle j'ai intégré des observations des conditions des joints, les caractéristiques du réseau de fractures et les résultats de tests géoméchaniques sur la roche intacte. Ces analyses ont amélioré l'estimation des paramètres qui influencent la stabilité des compartiments rocheux et ont servi pour définir des volumes probables pour des éboulements futurs. Les nuages de points obtenus avec le scanner laser terrestre ont été utilisés avec succès aussi pour produire des cartes géologiques en 3D, en utilisant l'intensité du signal réfléchi. Une autre technique pour obtenir des cartes géologiques des zones verticales consiste à combiner un maillage LiDAR avec une carte géologique en 2D. A El Capitan (Yosemite Valley) nous avons pu géoréferencer une carte verticale des principales roches plutoniques que j'ai utilisé ensuite pour étudier les raisons d'une érosion préférentielle de certaines zones de la paroi. D'autres efforts pour quantifier le taux d'érosion ont été effectués au Monte Generoso (Ticino, Suisse) où j'ai essayé d'améliorer l'estimation de l'érosion au long terme en prenant en compte les volumes des compartiments rocheux instables. L'intégration de ces résultats, sur la fracturation et la composition de l'amas rocheux, avec les méthodes existantes permet d'améliorer la prise en compte de l'aléa chute de pierres et éboulements et augmente les possibilités d'interprétation de l'évolution des parois rocheuses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: This article is part of a research study on the organization of primary health care (PHC) for mental health in two of Quebec's remote regions. It introduces a methodological approach based on information found in health records, for assessing the quality of PHC offered to people suffering from depression or anxiety disorders. METHODS: Quality indicators were identified from evidence and case studies were reconstructed using data collected in health records over a 2-year observation period. Data collection was developed using a three-step iterative process: (1) feasibility analysis, (2) development of a data collection tool, and (3) application of the data collection method. The adaptation of quality-of-care indicators to remote regions was appraised according to their relevance, measurability and construct validity in this context. RESULTS: As a result of this process, 18 quality indicators were shown to be relevant, measurable and valid for establishing a critical quality appraisal of four recommended dimensions of PHC clinical processes: recognition, assessment, treatment and follow-up. CONCLUSIONS: There is not only an interest in the use of health records to assess the quality of PHC for mental health in remote regions but also a scientific value for the rigorous and meticulous methodological approach developed in this study. From the perspective of stakeholders in the PHC system of care in remote areas, quality indicators are credible and provide potential for transferability to other contexts. This study brings information that has the potential to identify gaps in and implement solutions adapted to the context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Executive SummaryIn Nepal, landslides are one of the major natural hazards after epidemics, killing over 100 persons per year. However, this figure is an underreported reflection of the actual impact that landslides have on livelihoods and food security in rural Nepal. With predictions of more intense rainfall patterns, landslide occurrence in the Himalayas is likely to increase and continue to be one of the major impediments to development. Due to the remoteness of many localities and lack of resources, responsibilities for disaster preparedness and response in mountain areas usually lie with the communities themselves. Everyday life is full of risk in mountains of Nepal. This is why mountain populations, as well as other populations living in harsh conditions have developed a number of coping strategies for dealing with adverse situations. Perhaps due to the dispersed and remote nature of landslides in Nepal, there have been few studies on vulnerability, coping- and mitigation strategies of landslide affected populations. There are also few recommendations available to guide authorities and populations how to reduce losses due to landslides in Nepal, and even less so, how to operationalize resilience and vulnerability.Many policy makers, international donors, NGOs and national authorities are currently asking what investments are needed to increase the so-called 'resilience' of mountain populations to deal with climate risks. However, mountain populations are already quite resilient to seasonal fluctuations, temperature variations, rainfall patterns and market prices. In spite of their resilience, they continue to live in places at risk due to high vulnerability caused by structural inequalities: access to land, resources, markets, education. This interdisciplinary thesis examines the concept of resilience by questioning its usefulness and validity as the current goal of international development and disaster risk reduction policies, its conceptual limitations and its possible scope of action. The goal of this study is two-fold: to better define and distinguish factors and relationships between resilience, vulnerability, capacities and risk; and to test and improve a participatory methodology for evaluating landslide risk that can serve as a guidance tool for improving community-based disaster risk reduction. The objective is to develop a simple methodology that can be used by NGOs, local authorities and communities to reduce losses from landslides.Through its six case studies in Central-Eastern Nepal, this study explores the relation between resilience, vulnerability and landslide risk based on interdisciplinary methods, including geological assessments of landslides, semi-structured interviews, focus groups and participatory risk mapping. For comparison, the study sites were chosen in Tehrathum, Sunsari and Dolakha Districts of Central/Eastern Nepal, to reflect a variety of landslide types, from chronic to acute, and a variety of communities, from very marginalized to very high status. The study uses the Sustainable Livelihoods Approach as its conceptual basis, which is based on the notion that access and rights to resources (natural, human/institutional, economic, environmental, physical) are the basis for coping with adversity, such as landslides. The study is also intended as a contribution to the growing literature and practices on Community Based Disaster Risk Reduction specifically adapted to landslide- prone areas.In addition to the six case studies, results include an indicator based methodology for assessing and measuring vulnerability and resilience, a composite risk assessment methodology, a typology of coping strategies and risk perceptions and a thorough analysis of the relation between risk, vulnerability and resilience. The methodology forassessing vulnerability, resilience and risk is relatively cost-effective and replicable in a low-data environment. Perhaps the major finding is that resilience is a process that defines a community's (or system's) capacity to rebound following adversity but it does not necessarily reduce vulnerability or risk, which requires addressing more structural issues related to poverty. Therefore, conclusions include a critical view of resilience as a main goal of international development and disaster risk reduction policies. It is a useful concept in the context of recovery after a disaster but it needs to be addressed in parallel with vulnerability and risk.This research was funded by an interdisciplinary grant (#26083591) from the Swiss National Science Foundation for the period 2009-2011 and a seed grant from the Faculty of Geosciences and Environment at the University of Lausanne in 2008.Résumé en françaisAu Népal, les glissements de terrain sont un des aléas les plus dévastateurs après les épidémies, causant 100 morts par an. Pourtant, ce chiffre est une sous-estimation de l'impact réel de l'effet des glissements sur les moyens de subsistance et la sécurité alimentaire au Népal. Avec des prévisions de pluies plus intenses, l'occurrence des glissements dans les Himalayas augmente et présente un obstacle au développement. Du fait de l'éloignement et du manque de ressources dans les montagnes au Népal, la responsabilité de la préparation et la réponse aux catastrophes se trouve chez les communautés elles-mêmes. Le risque fait partie de la vie quotidienne dans les montagnes du Népal. C'est pourquoi les populations montagnardes, comme d'autres populations vivant dans des milieux contraignants, ont développé des stratégies pour faire face aux situations défavorables. Peu d'études existent sur la vulnérabilité, ceci étant probablement dû à l'éloignement et pourtant, les stratégies d'adaptation et de mitigation des populations touchées par des glissements au Népal existent.Beaucoup de décideurs politiques, bailleurs de fonds, ONG et autorités nationales se demandent quels investissements sont nécessaires afin d'augmenter la 'resilience' des populations de montagne pour faire face aux changements climatiques. Pourtant, ces populations sont déjà résilientes aux fluctuations des saisons, des variations de température, des pluies et des prix des marchés. En dépit de leur résilience, ils continuent de vivre dans des endroits à fort risque à cause des vulnérabilités créées par les inégalités structurelles : l'accès à la terre, aux ressources, aux marchés et à l'éducation. Cette thèse interdisciplinaire examine le concept de la résilience en mettant en cause son utilité et sa validité en tant que but actuel des politiques internationales de développement et de réduction des risques, ainsi que ses limitations conceptuelles et ses possibles champs d'action. Le but de cette étude est double : mieux définir et distinguer les facteurs et relations entre la résilience, la vulnérabilité, les capacités et le risque ; Et tester et améliorer une méthode participative pour évaluer le risque des glissements qui peut servir en tant qu'outil indicatif pour améliorer la réduction des risques des communautés. Le but est de développer une méthodologie simple qui peut être utilisée par des ONG, autorités locales et communautés pour réduire les pertes dues aux glissements.A travers les études de cas au centre-est du Népal, cette étude explore le rapport entre la résilience, la vulnérabilité et les glissements basée sur des méthodes interdisciplinaires ; Y sont inclus des évaluations géologiques des glissements, des entretiens semi-dirigés, des discussions de groupes et des cartes de risques participatives. Pour la comparaison, les zones d'études ont été sélectionnées dans les districts de Tehrathum, Sunsari et Dolakha dans le centre-est du Népal, afin de refléter différents types de glissements, de chroniques à urgents, ainsi que différentes communautés, variant de très marginalisées à très haut statut. Pour son cadre conceptuel, cette étude s'appuie sur l'approche de moyens de subsistance durable, qui est basée sur les notions d'accès et de droit aux ressources (naturelles, humaines/institutionnelles, économiques, environnementales, physiques) et qui sont le minimum pour faire face à des situations difficiles, comme des glissements. Cette étude se veut aussi une contribution à la littérature et aux pratiques en croissantes sur la réduction des risques communautaires, spécifiquement adaptées aux zones affectées par des glissements.En plus des six études de cas, les résultats incluent une méthodologie basée sur des indicateurs pour évaluer et mesurer la vulnérabilité et la résilience, une méthodologie sur le risque composé, une typologie de stratégies d'adaptation et perceptions des risques ainsi qu'une analyse fondamentale de la relation entre risque, vulnérabilité et résilience. Les méthodologies pour l'évaluation de la vulnérabilité, de la résilience et du risque sont relativement peu coûteuses et reproductibles dans des endroits avec peu de données disponibles. Le résultat probablement le plus pertinent est que la résilience est un processus qui définit la capacité d'une communauté (ou d'un système) à rebondir suite à une situation défavorable, mais qui ne réduit pas forcement la vulnérabilité ou le risque, et qui requiert une approche plus fondamentale s'adressant aux questions de pauvreté. Les conclusions incluent une vue critique de la résilience comme but principal des politiques internationales de développement et de réduction des risques. C'est un concept utile dans le contexte de la récupération après une catastrophe mais il doit être pris en compte au même titre que la vulnérabilité et le risque.Cette recherche a été financée par un fonds interdisciplinaire (#26083591) du Fonds National Suisse pour la période 2009-2011 et un fonds de préparation de recherches par la Faculté des Géosciences et Environnement à l'Université de Lausanne en 2008.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Both systolic and diastolic dysfunction have been observed in patients with anterolateral myocardial infarction. Diastolic dysfunction is related to disturbances in relaxation and diastolic filling. OBJECTIVE: To analyse cardiac rotation, regional shortening and diastolic relaxation in patients with anterolateral infarction. METHODS: Cardiac rotation and relaxation in controls and patients with chronic anterolateral infarction were assessed by myocardial tagging. Myocardial tagging is based on magnetic resonance imaging and allows us to label specific myocardial regions for imaging cardiac motion (rotation, translation and radial displacement). A rectangular grid was placed on the myocardium (basal, equatorial and apical short-axis plane) of each of 18 patients with chronic anterolateral infarction and 13 controls. Cardiac rotation, change in area and shortening of circumference were determined in each case. RESULTS: The left ventricle in controls performs a systolic wringing motion with a clockwise rotation at the base and a counterclockwise rotation at the apex when viewed from the apex. During relaxation a rotational motion in the opposite direction (namely untwisting) can be observed. In patients with anterolateral infarction, there is less systolic rotation at the apex and diastolic untwisting is delayed and prolonged in comparison with controls. In the presence of a left ventricular aneurysm (n = 4) apical rotation is completely lost. There is less shortening of circumference in infarcted and remote regions. CONCLUSIONS: The wringing motion of the myocardium might be an important mechanism involved in maintaining normal cardiac function with minimal expenditure of energy. This mechanism no longer operates in patients with left ventricular aneurysms and operates significantly less than normal in those with anterolateral hypokinaesia. Diastolic untwisting is significantly delayed and prolonged in patients with anterolateral infarction, which could explain the occurrence of diastolic dysfunction in these patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality. METHODS: Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice. RESULTS: Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s). CONCLUSIONS: Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In societies with strong multigenerational links, economic uncertainty results in choosing to stay with one child, sometimes in association with postponement of first births (i.e. Italy) and sometimes in early childbearing (i.e. Bulgaria). The interaction between intergenerational family practices in lowest-low fertility contexts is likely to play a role on differences timing to parenthood. In this paper, we focus on the phenomenon of women who have one child in their early twenties in Bulgaria and do not intend to have a second child. We argue that the key to this process is the persistence of extended multigenerational households in the Bulgarian context and their effect on young couples' fertility decision making. We use semi-structured interview data from the project Fertility Choices in Central and Eastern Europe and ethnographic fieldnotes. The interviews were collected from a sample of 22 couples resident in Sofia and representing different permutations of educational level, marital status and number of children (0 or 1). The four-year ethnographic fieldwork was conducted in both rural and urban Bulgaria between 1997 and 2009. Results suggest that as long as the economic situation remains dire, and young Bulgarians hopes for the future remain cynical, multigenerational households represent the accepted practice of entering into parenthood for young families.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Waveform-based tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of electrical properties in near-surface environments with unprecedented spatial resolution. A critical issue with waveform inversion is the a priori unknown source signal. Indeed, the estimation of the source pulse is notoriously difficult but essential for the effective application of this method. Here, we explore the viability and robustness of a recently proposed deconvolution-based procedure to estimate the source pulse during waveform inversion of crosshole georadar data, where changes in wavelet shape with location as a result of varying near-field conditions and differences in antenna coupling may be significant. Specifically, we examine whether a single, average estimated source current function can adequately represent the pulses radiated at all transmitter locations during a crosshole georadar survey, or whether a separate source wavelet estimation should be performed for each transmitter gather. Tests with synthetic and field data indicate that remarkably good tomographic reconstructions can be obtained using a single estimated source pulse when moderate to strong variability exists in the true source signal with antenna location. Only in the case of very strong variability in the true source pulse are tomographic reconstructions clearly improved by estimating a different source wavelet for each transmitter location.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A semisupervised support vector machine is presented for the classification of remote sensing images. The method exploits the wealth of unlabeled samples for regularizing the training kernel representation locally by means of cluster kernels. The method learns a suitable kernel directly from the image and thus avoids assuming a priori signal relations by using a predefined kernel structure. Good results are obtained in image classification examples when few labeled samples are available. The method scales almost linearly with the number of unlabeled samples and provides out-of-sample predictions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.