53 resultados para Running coupling
em Université de Lausanne, Switzerland
Resumo:
The aim of this study was to characterize the effect of a 5 km running time trial on the neuromuscular properties of the plantar flexors. Eleven well-trained triathletes performed a series of neuromuscular tests before and immediately after the run on a 200 m indoor track. Muscle activation (twitch interpolation) and normalized EMG activity were assessed during maximal voluntary contraction (MVC) of plantar flexors. Maximal soleus H-reflexes and M-waves were evoked at rest (i.e. H (MAX) and M (MAX), respectively) and during MVC (i.e. H (SUP) and M (SUP), respectively). MVC significantly declined (-27%; P < 0.001) after the run, due to decrease in muscle activation (-8%; P < 0.05) and M (MAX)-normalized EMG activity (-13%; P < 0.05). Significant reductions in M-wave amplitudes (M (MAX): -13% and M (SUP): -16%; P < 0.05) as well as H (MAX)/M (MAX) (-37%; P < 0.01) and H (SUP)/M (SUP) (-25%; P < 0.05) ratios occurred with fatigue. Following exercise, the single twitch was characterized by lower peak torque (-16%; P < 0.001) as well as shorter contraction (-19%; P < 0.001) and half-relaxation (-24%; P < 0.001) times. In conclusion, the reduction in plantar flexors strength induced by a 5 km running time trial is caused by peripheral adjustments, which are attributable to a failure of the neuromuscular transmission and excitation-contraction coupling. Fatigue also decreased the magnitude of efferent motor outflow from spinal motor neurons to the plantar flexors and part of this suboptimal neural drive is the result of an inhibition of soleus motoneuron pool reflex excitability.
Resumo:
The aim of this study was to characterize the effect of a 5 km running time trial on the neuromuscular properties of the plantar flexors. Eleven well-trained triathletes performed a series of neuromuscular tests before and immediately after the run on a 200 m indoor track. Muscle activation (twitch interpolation) and normalized EMG activity were assessed during maximal voluntary contraction (MVC) of plantar flexors. Maximal soleus H-reflexes and M-waves were evoked at rest (i.e. H (MAX) and M (MAX), respectively) and during MVC (i.e. H (SUP) and M (SUP), respectively). MVC significantly declined (-27%; P < 0.001) after the run, due to decrease in muscle activation (-8%; P < 0.05) and M (MAX)-normalized EMG activity (-13%; P < 0.05). Significant reductions in M-wave amplitudes (M (MAX): -13% and M (SUP): -16%; P < 0.05) as well as H (MAX)/M (MAX) (-37%; P < 0.01) and H (SUP)/M (SUP) (-25%; P < 0.05) ratios occurred with fatigue. Following exercise, the single twitch was characterized by lower peak torque (-16%; P < 0.001) as well as shorter contraction (-19%; P < 0.001) and half-relaxation (-24%; P < 0.001) times. In conclusion, the reduction in plantar flexors strength induced by a 5 km running time trial is caused by peripheral adjustments, which are attributable to a failure of the neuromuscular transmission and excitation-contraction coupling. Fatigue also decreased the magnitude of efferent motor outflow from spinal motor neurons to the plantar flexors and part of this suboptimal neural drive is the result of an inhibition of soleus motoneuron pool reflex excitability.
Resumo:
Research into the biomechanical manifestation of fatigue during exhaustive runs is increasingly popular but additional understanding of the adaptation of the spring-mass behaviour during the course of strenuous, self-paced exercises continues to be a challenge in order to develop optimized training and injury prevention programs. This study investigated continuous changes in running mechanics and spring-mass behaviour during a 5-km run. 12 competitive triathletes performed a 5-km running time trial (mean performance: 17 min 30 s) on a 200 m indoor track. Vertical and anterior-posterior ground reaction forces were measured every 200 m by a 5-m long force platform system, and used to determine spring-mass model characteristics. After a fast start, running velocity progressively decreased (- 11.6%; P<0.001) in the middle part of the race before an end spurt in the final 400-600 m. Stride length (- 7.4%; P<0.001) and frequency (- 4.1%; P=0.001) decreased over the 25 laps, while contact time (+ 8.9%; P<0.001) and total stride duration (+ 4.1%; P<0.001) progressively lengthened. Peak vertical forces (- 2.0%; P<0.01) and leg compression (- 4.3%; P<0.05), but not centre of mass vertical displacement (+ 3.2%; P>0.05), decreased with time. As a result, vertical stiffness decreased (- 6.0%; P<0.001) during the run, whereas leg stiffness changes were not significant (+ 1.3%; P>0.05). Spring-mass behaviour progressively changes during a 5-km time trial towards deteriorated vertical stiffness, which alters impact and force production characteristics.
Resumo:
The purpose of this review was to provide a synopsis of the literature concerning the physiological differences between cycling and running. By comparing physiological variables such as maximal oxygen consumption (V O(2max)), anaerobic threshold (AT), heart rate, economy or delta efficiency measured in cycling and running in triathletes, runners or cyclists, this review aims to identify the effects of exercise modality on the underlying mechanisms (ventilatory responses, blood flow, muscle oxidative capacity, peripheral innervation and neuromuscular fatigue) of adaptation. The majority of studies indicate that runners achieve a higher V O(2max) on treadmill whereas cyclists can achieve a V O(2max) value in cycle ergometry similar to that in treadmill running. Hence, V O(2max) is specific to the exercise modality. In addition, the muscles adapt specifically to a given exercise task over a period of time, resulting in an improvement in submaximal physiological variables such as the ventilatory threshold, in some cases without a change in V O(2max). However, this effect is probably larger in cycling than in running. At the same time, skill influencing motor unit recruitment patterns is an important influence on the anaerobic threshold in cycling. Furthermore, it is likely that there is more physiological training transfer from running to cycling than vice versa. In triathletes, there is generally no difference in V O(2max) measured in cycle ergometry and treadmill running. The data concerning the anaerobic threshold in cycling and running in triathletes are conflicting. This is likely to be due to a combination of actual training load and prior training history in each discipline. The mechanisms surrounding the differences in the AT together with V O(2max) in cycling and running are not largely understood but are probably due to the relative adaptation of cardiac output influencing V O(2max) and also the recruitment of muscle mass in combination with the oxidative capacity of this mass influencing the AT. Several other physiological differences between cycling and running are addressed: heart rate is different between the two activities both for maximal and submaximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than in running. It has also been shown that pedalling cadence affects the metabolic responses during cycling but also during a subsequent running bout. However, the optimal cadence is still debated. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.
Resumo:
This study aimed to quantitatively describe and compare whole-body fat oxidation kinetics in cycling and running using a sinusoidal mathematical model (SIN). Thirteen moderately trained individuals (7 men and 6 women) performed two graded exercise tests, with 3-min stages and 1 km h(-1) (or 20 W) increment, on a treadmill and on a cycle ergometer. Fat oxidation rates were determined using indirect calorimetry and plotted as a function of exercise intensity. The SIN model, which includes three independent variables (dilatation, symmetry and translation) that account for main quantitative characteristics of kinetics, provided a mathematical description of fat oxidation kinetics and allowed for determination of the intensity (Fat(max)) that elicits maximal fat oxidation (MFO). While the mean fat oxidation kinetics in cycling formed a symmetric parabolic curve, the mean kinetics during running was characterized by a greater dilatation (i.e., widening of the curve, P < 0.001) and a rightward asymmetry (i.e., shift of the peak of the curve to higher intensities, P = 0.01). Fat(max) was significantly higher in running compared with cycling (P < 0.001), whereas MFO was not significantly different between modes of exercise (P = 0.36). This study showed that the whole-body fat oxidation kinetics during running was characterized by a greater dilatation and a rightward asymmetry compared with cycling. The greater dilatation may be mainly related to the larger muscle mass involved in running while the rightward asymmetry may be induced by the specific type of muscle contraction.
Resumo:
BACKGROUND: An animal study was carried out to compare long-term patency rates of coronary anastomoses performed with the GraftConnector versus running suture technique. METHODS: 10 sheep, 45 to 55 kg, underwent off-pump coronary artery bypass grafting (right internal mammary artery to left anterior descending artery). In 5 animals, the anastomosis was performed with a GraftConnector and in 5 animals with 7-0 running suture. Intraoperative fluoroscopy and a fluoroscopic control at 6 months were performed. After 6 months, the animals were sacrificed and the anastomoses were examined histologically. RESULTS: All animals survived at 6 months with 100% anastomosis patency rates in both groups. In the GraftConnector group, the anastomosis diameter at 6 months fluoroscopy was 118% of native left anterior descending artery versus 97% of the control group. Luminal anastomotic width at histology was 1.7 +/- 0.2 mm in the device group versus 1.6 +/- 0.1 mm in the control group. Mean intimal hyperplasia thickness was 0.21 +/- 0.1 mm in the device group versus 0.01 mm in the control group. CONCLUSIONS: The GraftConnector provides a consistent and reproducible coronary artery anastomosis and reduces technical demand and manual dexterity in coronary operations. Long-term results demonstrate that off-pump coronary artery bypass grafting performed with the GraftConnector had the same patency rate and luminal width as those performed with running suture.
Resumo:
To determine whether a 4-a-side handball (HB) game is an appropriate aerobic stimulus to reach and potentially enhance maximal oxygen uptake (V O(2)max), and whether heart rate (HR) is a valid index of V O(2) during a handball game. Nine skilled players (21.0+/-2.9 yr) underwent a graded maximal aerobic test (GT) where V O(2)max and HR-V O(2) relationship were determined. V O(2), HR and blood lactate ([La](b)) were recorded during a 2 x 225 s (interspersed with 30s rest) 4-a-side handball game and were compared to those measured during an 480-s running intermittent exercise (IE). Mean V O(2) tended to be higher in handball compared to IE (93.9+/-8.5 vs. 87.6+/-7.4% O(2)max, p=0.06), whereas HR was similar (92.3+/-4.9 vs. 93.9+/-3.9% of the peak of HR, p=0.10). [La](b) was lower for handball than for IE (8.9+/-3.5 vs. 11.6+/-2.1 mmol l(-1), p=0.04). Time spent over 90% of V O(2)max was higher for handball than for IE (336.1+/-139.6s vs. 216.1+/-124.7s; p=0.03). The HR-V O(2) relationship during GT was high (r(2)=0.96, p<0.001) but estimated V O(2) from HR was lower to that measured (p=0.03) in handball, whereas there was no difference in IE. 4-a-side handball game can be used as a specific alternative to IE for enhancing aerobic fitness in handball players. Nevertheless, the accuracy of HR measures for estimating V O(2) during handball is poor.
Resumo:
INTRODUCTION. Neurally Adjusted Ventilatory Assist (NAVA) is a new ventilatory mode in which ventilator settings are adjusted based on the electrical activity detected in the diaphragm (Eadi). This mode offers significant advantages in mechanical ventilation over standard pressure support (PS) modes, since ventilator input is determined directly from patient ventilatory demand. Therefore, it is expected that tidal volume (Vt) under NAVA would show better correlation with Eadi compared with PS, and exhibit greater variability due to the variability in the Eadi input to the ventilator. OBJECTIVES. To compare tidal volume variability in PS and NAVA ventilation modes, and its correlation with patient ventilatory demand (as characterized by maximum Eadi). METHODS. Acomparative study of patient-ventilator interaction was performed for 22 patients during standard PS with clinician determined ventilator settings; and NAVA, with NAVA gain set to ensure the same peak airway pressure as the total pressure obtained in PS. A 20 min continuous recording was performed in each ventilator mode. Respiratory rate, Vt, and Eadi were recorded. Tidal volume variance and Pearson correlation coefficient between Vt and Eadi were calculated for each patient. A periodogram was plotted for each ventilator mode and each patient, showing spectral power as a function of frequency to assess variability. RESULTS. Median, lower quartile and upper quartile values for Vt variance and Vt/Eadi correlation are shown in Table 1. The NAVA cohort exhibits substantially greater correlation and variance than the PS cohort. Power spectrums for Vt and Eadi are shown in Fig. 1 (PS and NAVA) for a typical patient. The enlarged section highlights how changes in Eadi are highly synchronized with NAVA ventilation, but less so for PS. CONCLUSIONS. There is greater variability in tidal volume and correlation between tidal volume and diaphragmatic electrical activity with NAVA compared to PS. These results are consistent with the improved patient-ventilator synchrony reported in the literature.
Resumo:
Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2',7'-dichlorofluorescin (DCFH). Effects of the specific mitoK(ATP) channel opener diazoxide (Diazo, 50 microM) or the blocker 5-hydroxydecanoate (5-HD, 500 microM), the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 microM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 microM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or L-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, L-NAME, or Chel, whereas protection of the PR interval was abolished by L-NAME exclusively. Thus pharmacological opening of the mitoK(ATP) channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.
Resumo:
Introduction: Accurate registration of the relative timing between the occurrence of sensory events on a sub-second time scale is crucial for both sensory-motor and cognitive functions (Mauk and Buonomano, 2004; Habib, 2000). Support for this assumption comes notably from evidence that temporal processing impairments are implicated in a range of neurological and psychiatric conditions (e.g. Buhusi & Meck, 2005). For instance, deficits in fast auditory temporal integration have been regularly put forward as resulting in phonologic discrimination impairments at the basis of speech comprehension deficits characterizing e.g. dyslexia (Habib, 2000). At least two aspects of the brain mechanisms of temporal order judgment remain unknown. First, it is unknown when during the course of stimulus processing a temporal ,,stamp‟ is established to guide TOJ perception. Second, the extent of interplay between the cerebral hemispheres in engendering accurate TOJ performance is unresolved Methods: We investigated the spatiotemporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. Results: AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional de-coupling between homotopic PSR areas. Conclusions: These results support a model of temporal order processing wherein behaviorally relevant temporal information - i.e. a temporal 'stamp'- is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms.
Resumo:
PURPOSE: The origin of the slow component is not fully understood. The mechanical hypothesis is one of the potential factors, because an increase in external mechanical work with fatigue was previously reported for a constant velocity run. The purpose of this study was to determine whether a change in mechanical work could occur during the development of the VO2 slow component under the effect of fatigue. METHODS: Twelve regional-level competitive runners performed a square-wave transition, corresponding to 95% of the speed associated with peak VO2 obtained during an incremental test. The VO2 response was fit with a classical model including two exponential functions. A specific treadmill with three-dimensional force transducers was used to measure the ground reaction force. Kinetic work (W(kin)), potential work (W(pot)), external work (W(ext)), and an index of internal work (W(int)) per unit of distance were quantified continuously. RESULTS: During the slow component of VO2, a significant increase in W (P< 0.01), no change in W, and a significant decrease in W and W index (P< 0.05, P< 0.001, respectively) were observed. CONCLUSION: The present study showed that the slow component of VO2 did not result partly from a change in mechanical work under the effect of fatigue. Nevertheless, the decrease in stride frequency (P< 0.001) and contact time (P< 0.001) suggested an alternative mechanical explanation. The slow component during running may be due to the cost of generating force or to alterations in the storage and recoil of elastic energy, and not to the external mechanical work.
Resumo:
This study aimed to compare foot plantar pressure distribution while jogging and running in highly trained adolescent runners. Eleven participants performed two constant-velocity running trials either at jogging (11.2 ± 0.9 km/h) or running (17.8 ± 1.4 km/h) pace on a treadmill. Contact area (CA in cm(2)), maximum force (F(max) in N), peak pressure (PP in kPa), contact time (CT in ms), and relative load (force time integral in each individual region divided by the force time integral for the total plantar foot surface, in %) were measured in nine regions of the right foot using an in-shoe plantar pressure device. Under the whole foot, CA, F(max) and PP were lower in jogging than in running (-1.2% [p<0.05], -12.3% [p<0.001] and -15.1% [p<0.01] respectively) whereas CT was higher (+20.1%; p<0.001). Interestingly, we found an increase in relative load under the medial and central forefoot regions while jogging (+6.7% and +3.7%, respectively; [p<0.05]), while the relative load under the lesser toes (-8.4%; p<0.05) was reduced. In order to prevent overloading of the metatarsals in adolescent runners, excessive mileage at jogging pace should be avoided.
Resumo:
The extraordinary sensitivity of CD8+ T cells to recognize antigen impinges to a large extent on the coreceptor CD8. While several studies have shown that the CD8beta chain endows CD8 with efficient coreceptor function, the molecular basis for this is enigmatic. Here we report that cell-associated CD8alphabeta, but not CD8alphaalpha or soluble CD8alphabeta, substantially increases the avidity of T cell receptor (TCR)-ligand binding. To elucidate how the cytoplasmic and transmembrane portions of CD8beta endow CD8 with efficient coreceptor function, we examined T1.4 T cell hybridomas transfected with various CD8beta constructs. T1.4 hybridomas recognize a photoreactive Plasmodium berghei circumsporozoite (PbCS) peptide derivative (PbCS (4-azidobezoic acid [ABA])) in the context of H-2K(d), and permit assessment of TCR-ligand binding by TCR photoaffinity labeling. We find that the cytoplasmic portion of CD8beta, mainly due to its palmitoylation, mediates partitioning of CD8 in lipid rafts, where it efficiently associates with p56(lck). In addition, the cytoplasmic portion of CD8beta mediates constitutive association of CD8 with TCR/CD3. The resulting TCR-CD8 adducts exhibit high affinity for major histocompatibility complex (MHC)-peptide. Importantly, because CD8alphabeta partitions in rafts, its interaction with TCR/CD3 promotes raft association of TCR/CD3. Engagement of these TCR/CD3-CD8/lck adducts by multimeric MHC-peptide induces activation of p56(lck) in rafts, which in turn phosphorylates CD3 and initiates T cell activation.