5 resultados para Rotating masses of fluid

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ajjanahalli gold mine is spatially associated with a Late Archean craton-scale shear zone in the eastern Chitradurga greenstone belt of the Dharwar craton, India. Gold mineralization is hosted by an similar to100-m-wide antiform in a banded iron formation. Original magnetite and siderite are replaced by a peak metamorphic alteration assemblage of chlorite, stilpnomelane, minnesotaite, sericite, ankerite, arsenopyrite, pyrite, pyrrhotite, and gold at ca. 300degrees to 350degreesC. Elements enriched in the banded iron formation include Ca, Mg, C, S, An, As, Bi. Cu, Sb, Zn, Pb, Se, Ag, and Te, whereas in the wall rocks As, Cu, Zn, Bi, Ag, and An are only slightly enriched. Strontium correlates with CaO, MgO, CO2, and As, which indicates cogenetic formation of arsenopyrite and Mg-Ca carbonates. The greater extent of alteration in the Fe-rich banded iron formation layers than in the wall rock reflects the greater reactivity of the banded iron formation layers. The ore fluids, as interpreted from their isotopic composition (delta(18)O = 6.5-8.5parts per thousand; initial Sr-87/Sr-86 = 0.7068-0.7078), formed by metamorphic devolatilization of deeper levels of the Chitradurga greenstone belt. Arsenopyrite, chalcopyrite, and pyrrhotite have delta(34)S values within a narrow range between 2.1 and 2.7 per mil, consistent with a sulfur source in Chitradurga greenstone belt lithologies. Based on spatial and temporal relationships between mineralization, local structure development, and sinistral strike-slip deformation in the shear zone at the eastern contact of the Chitradurga greenstone belt, we suggest that the Ajjanahalli gold mineralization formed by fluid infiltration into a low strain area within the first-order structure. The ore fluids were transported along this shear zone into relatively shallow crustal levels during lateral terrane accretion and a change from thrust to transcurrent tectonics. Based on this model of fluid flow, exploration should focus on similar low strain areas or potentially connected higher order splays of the first-order shear zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," published in 2004. DESIGN: Modified Delphi method with a consensus conference of 55 international experts, several subsequent meetings of subgroups and key individuals, teleconferences, and electronic-based discussion among subgroups and among the entire committee. This process was conducted independently of any industry funding. METHODS: We used the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations. A strong recommendation (1) indicates that an intervention's desirable effects clearly outweigh its undesirable effects (risk, burden, cost) or clearly do not. Weak recommendations (2) indicate that the tradeoff between desirable and undesirable effects is less clear. The grade of strong or weak is considered of greater clinical importance than a difference in letter level of quality of evidence. In areas without complete agreement, a formal process of resolution was developed and applied. Recommendations are grouped into those directly targeting severe sepsis, recommendations targeting general care of the critically ill patient that are considered high priority in severe sepsis, and pediatric considerations. RESULTS: Key recommendations, listed by category, include early goal-directed resuscitation of the septic patient during the first 6 hrs after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm potential source of infection (1C); administration of broad-spectrum antibiotic therapy within 1 hr of diagnosis of septic shock (1B) and severe sepsis without septic shock (1D); reassessment of antibiotic therapy with microbiology and clinical data to narrow coverage, when appropriate (1C); a usual 7-10 days of antibiotic therapy guided by clinical response (1D); source control with attention to the balance of risks and benefits of the chosen method (1C); administration of either crystalloid or colloid fluid resuscitation (1B); fluid challenge to restore mean circulating filling pressure (1C); reduction in rate of fluid administration with rising filing pressures and no improvement in tissue perfusion (1D); vasopressor preference for norepinephrine or dopamine to maintain an initial target of mean arterial pressure > or = 65 mm Hg (1C); dobutamine inotropic therapy when cardiac output remains low despite fluid resuscitation and combined inotropic/vasopressor therapy (1C); stress-dose steroid therapy given only in septic shock after blood pressure is identified to be poorly responsive to fluid and vasopressor therapy (2C); recombinant activated protein C in patients with severe sepsis and clinical assessment of high risk for death (2B except 2C for postoperative patients). In the absence of tissue hypoperfusion, coronary artery disease, or acute hemorrhage, target a hemoglobin of 7-9 g/dL (1B); a low tidal volume (1B) and limitation of inspiratory plateau pressure strategy (1C) for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure in acute lung injury (1C); head of bed elevation in mechanically ventilated patients unless contraindicated (1B); avoiding routine use of pulmonary artery catheters in ALI/ARDS (1A); to decrease days of mechanical ventilation and ICU length of stay, a conservative fluid strategy for patients with established ALI/ARDS who are not in shock (1C); protocols for weaning and sedation/analgesia (1B); using either intermittent bolus sedation or continuous infusion sedation with daily interruptions or lightening (1B); avoidance of neuromuscular blockers, if at all possible (1B); institution of glycemic control (1B), targeting a blood glucose < 150 mg/dL after initial stabilization (2C); equivalency of continuous veno-veno hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1A); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding using H2 blockers (1A) or proton pump inhibitors (1B); and consideration of limitation of support where appropriate (1D). Recommendations specific to pediatric severe sepsis include greater use of physical examination therapeutic end points (2C); dopamine as the first drug of choice for hypotension (2C); steroids only in children with suspected or proven adrenal insufficiency (2C); and a recommendation against the use of recombinant activated protein C in children (1B). CONCLUSIONS: There was strong agreement among a large cohort of international experts regarding many level 1 recommendations for the best current care of patients with severe sepsis. Evidenced-based recommendations regarding the acute management of sepsis and septic shock are the first step toward improved outcomes for this important group of critically ill patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulation of sodium balance is a critical factor in the maintenance of euvolemia, and dysregulation of renal sodium excretion results in disorders of altered intravascular volume, such as hypertension. The amiloride-sensitive epithelial sodium channel (ENaC) is thought to be the only mechanism for sodium transport in the cortical collecting duct (CCD) of the kidney. However, it has been found that much of the sodium absorption in the CCD is actually amiloride insensitive and sensitive to thiazide diuretics, which also block the Na-Cl cotransporter (NCC) located in the distal convoluted tubule. In this study, we have demonstrated the presence of electroneutral, amiloride-resistant, thiazide-sensitive, transepithelial NaCl absorption in mouse CCDs, which persists even with genetic disruption of ENaC. Furthermore, hydrochlorothiazide (HCTZ) increased excretion of Na+ and Cl- in mice devoid of the thiazide target NCC, suggesting that an additional mechanism might account for this effect. Studies on isolated CCDs suggested that the parallel action of the Na+-driven Cl-/HCO3- exchanger (NDCBE/SLC4A8) and the Na+-independent Cl-/HCO3- exchanger (pendrin/SLC26A4) accounted for the electroneutral thiazide-sensitive sodium transport. Furthermore, genetic ablation of SLC4A8 abolished thiazide-sensitive NaCl transport in the CCD. These studies establish what we believe to be a novel role for NDCBE in mediating substantial Na+ reabsorption in the CCD and suggest a role for this transporter in the regulation of fluid homeostasis in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sodium transport via epithelial sodium channels (ENaC) expressed in alveolar epithelial cells (AEC) provides the driving force for removal of fluid from the alveolar space. The membrane-bound channel-activating protease 1 (CAP1/Prss8) activates ENaC in vitro in various expression systems. To study the role of CAP1/Prss8 in alveolar sodium transport and lung fluid balance in vivo, we generated mice lacking CAP1/Prss8 in the alveolar epithelium using conditional Cre-loxP-mediated recombination. Deficiency of CAP1/Prss8 in AEC induced in vitro a 40% decrease in ENaC-mediated sodium currents. Sodium-driven alveolar fluid clearance (AFC) was reduced in CAP1/Prss8-deficient mice, due to a 48% decrease in amiloride-sensitive clearance, and was less sensitive to beta(2)-agonist treatment. Intra-alveolar treatment with neutrophil elastase, a soluble serine protease activating ENaC at the cell surface, fully restored basal AFC and the stimulation by beta(2)-agonists. Finally, acute volume-overload increased alveolar lining fluid volume in CAP1/Prss8-deficient mice. This study reveals that CAP1 plays a crucial role in the regulation of ENaC-mediated alveolar sodium and water transport and in mouse lung fluid balance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Obstructive sleep apnea is associated with significantly increased cardiovascular morbidity and mortality. Fluid overload may promote obstructive sleep apnea in patients with ESRD through an overnight fluid shift from the legs to the neck soft tissues. Body fluid shift and severity of obstructive sleep apnea before and after hemodialysis were compared in patients with ESRD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Seventeen patients with hemodialysis and moderate to severe obstructive sleep apnea were included. Polysomnographies were performed the night before and after hemodialysis to assess obstructive sleep apnea, and bioimpedance was used to measure fluid overload and leg fluid volume. RESULTS: The mean overnight rostral fluid shift was 1.27±0.41 L prehemodialysis; it correlated positively with fluid overload volume (r=0.39; P=0.02) and was significantly lower posthemodialysis (0.78±0.38 L; P<0.001). There was no significant difference in the mean obstructive apnea-hypopnea index before and after hemodialysis (46.8±22.0 versus 42.1±18.6 per hour; P=0.21), but obstructive apnea-hypopnea index was significantly lower posthemodialysis (-10.1±10.8 per hour) in the group of 12 patients, with a concomitant reduction of fluid overload compared with participants without change in fluid overload (obstructive apnea-hypopnea index +8.2±16.1 per hour; P<0.01). A lower fluid overload after hemodialysis was significantly correlated (r=0.49; P=0.04) with a lower obstructive apnea-hypopnea index. Fluid overload-assessed by bioimpedance-was the best predictor of the change in obstructive apnea-hypopnea index observed after hemodialysis (standardized r=-0.68; P=0.01) in multivariate regression analysis. CONCLUSIONS: Fluid overload influences overnight rostral fluid shift and obstructive sleep apnea severity in patients with ESRD undergoing intermittent hemodialysis. Although no benefit of hemodialysis on obstructive sleep apnea severity was observed in the whole group, the change in obstructive apnea-hypopnea index was significantly correlated with the change in fluid overload after hemodialysis. Moreover, the subgroup with lower fluid overload posthemodialysis showed a significantly lower obstructive sleep apnea severity, which provides a strong incentive to further study whether optimizing fluid status in patients with obstructive sleep apnea and ESRD will improve the obstructive apnea-hypopnea index.