122 resultados para Root deformation
em Université de Lausanne, Switzerland
Resumo:
this study presents a review of published geological data, combined with original observations on the tectonics of the simplon massif and the Lepontine gneiss dome in the Western Alps. New observations concern the geometry of the Oligocene Vanzone back fold, formed under amphibolite facies conditions, and of its root between Domodossola and Locarno, which is cut at an acute angle by the Miocene, epi- to anchizonal, dextral centovalli strike-slip fault. the structures of the simplon massif result from collision over 50 Ma between two plate boundaries with a different geometry: the underthrusted European plate and the Adriatic indenter. Detailed mapping and analysis of a complex structural interference pattern, combined with observations on the metamorphic grade of the superimposed structures and radiometric data, allow a kinematic model to be developed for this zone of oblique continental collision. the following main Alpine tectonic phases and structures may be distinguished: 1. NW-directed nappe emplacement, starting in the Early Eocene (similar to 50 Ma); 2. W, SW and S- verging transverse folds; 3. transpressional movements on the dextral simplon ductile shear zone since similar to 32 Ma; 4. formation of the Bergell - Vanzone backfolds and of the southern steep belt during the Oligocene, emplacement of the mantle derived 31 - 29 Ma Bergell and Biella granodiorites and porphyritic andesites as well as intrusions of 29-25 Ma crustal aplites and pegmatites; 5. formation of the dextral discrete Rhone-Simplon line and the centovalli line during the Miocene, accompanied by the pull-apart development of the Lepontine gneiss dome - Dent blanche (Valpelline) depression. It is suggested that movements of shortening in fan shaped NW, W and sW directions accompanied the more regular NW- to WNW-directed displacement of the Adriatic indenter during continental collision.
Resumo:
Aortic root (AoR) components provide synchronous and precise 3D deformation of the aortic root during the cardiac cycle in order to ensure closure and opening of the three leaflets over a lifetime. Any deviation from the natural 3D morphology, such as with AoR annulus dilatation, enlarged sinuses and/or dilatation of the sinotubular junction, as in the case of ascending aortic dilatation, may result in disruption of the natural AoR function. Surgical treatment of AoR pathology has two modalities: the replacement of the aortic valve by artificial prosthesis or by preservation of the three leaflets and reconstruction of the aortic root components. Currently, there are two basic aortic root reconstruction procedures: aortic root sparing and aortic valve reimplantation techniques. Regardless of the technique used, the restoration of adequate cusp coaptation, is from a technical point of view, the most important element to consider. To achieve this, there are two requirements that need to be met: (i) the valve coaptation should be superior to the level of the aortic root base by at least 8 mm and (ii) the coaptation height per se has to be ≥5 mm. Successful restoration of the aortic root requires adequate technical skills, detailed knowledge of aortic root anatomy and topography, and also knowledge of the spatial pattern of AoR elements. Recently, there has been growing interest in aortic root reconstructive procedures as well their modifications. As such, the aim of this review is to analyse aortic root topography and 3D anatomy from a surgical point of view. The review also focuses on potential risk regions that one should be aware of before the surgical journey into the 'deep waters area' of the AoR begins.
Resumo:
Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.
Resumo:
The endodermis acts as a "second skin" in plant roots by providing the cellular control necessary for the selective entry of water and solutes into the vascular system. To enable such control, Casparian strips span the cell wall of adjacent endodermal cells to form a tight junction that blocks extracellular diffusion across the endodermis. This junction is composed of lignin that is polymerized by oxidative coupling of monolignols through the action of a NADPH oxidase and peroxidases. Casparian strip domain proteins (CASPs) correctly position this biosynthetic machinery by forming a protein scaffold in the plasma membrane at the site where the Casparian strip forms. Here, we show that the dirigent-domain containing protein, enhanced suberin1 (ESB1), is part of this machinery, playing an essential role in the correct formation of Casparian strips. ESB1 is localized to Casparian strips in a CASP-dependent manner, and in the absence of ESB1, disordered and defective Casparian strips are formed. In addition, loss of ESB1 disrupts the localization of the CASP1 protein at the casparian strip domain, suggesting a reciprocal requirement for both ESB1 and CASPs in forming the casparian strip domain.
Resumo:
? Arbuscular mycorrhizal fungi colonize the roots of most monocotyledons and dicotyledons despite their different root architecture and cell patterning. Among the cereal hosts of arbuscular mycorrhizal fungi, Oryza sativa (rice) possesses a peculiar root system composed of three different types of roots: crown roots; large lateral roots; and fine lateral roots. Characteristic is the constitutive formation of aerenchyma in crown roots and large lateral roots and the absence of cortex from fine lateral roots. Here, we assessed the distribution of colonization by Glomus intraradices within this root system and determined its effect on root system architecture. ? Large lateral roots are preferentially colonized, and fine lateral roots are immune to arbuscular mycorrhizal colonization. Fungal preference for large lateral roots also occurred in sym mutants that block colonization of the root beyond rhizodermal penetration. ? Initiation of large lateral roots is significantly induced by G. intraradices colonization and does not require a functional common symbiosis signaling pathway from which some components are known to be needed for symbiosis-mediated lateral root induction in Medicago truncatula. ? Our results suggest variation of symbiotic properties among the different rice root-types and induction of the preferred tissue by arbuscular mycorrhizal fungi. Furthermore, signaling for arbuscular mycorrhizal-elicited alterations of the root system differs between rice and M. truncatula.
Resumo:
The application of microbial biocontrol agents for the control of fungal plant diseases and plant insect pests is a promising approach in the development of environmentally benign pest management strategies. The ideal biocontrol organism would be a bacterium or a fungus with activity against both, insect pests and fungal pathogens. Here we demonstrate the oral insecticidal activity of the root colonizing Pseudomonas fluorescens CHA0, which is so far known for its capacity to efficiently suppress fungal plant pathogens. Feeding assays with CHA0-sprayed leaves showed that this strain displays oral insecticidal activity and is able to efficiently kill larvae of three important insect pests. We further show data indicating that the Fit insect toxin produced by CHA0 and also metabolites controlled by the global regulator GacA contribute to oral insect toxicity.
Resumo:
Background Entomopathogenic nematodes (EPNs) are tiny parasitic worms that parasitize insects, in which they reproduce. Their foraging behavior has been subject to numerous studies, most of which have proposed that, at short distances, EPNs use chemicals that are emitted directly from the host as host location cues. Carbon dioxide (CO2) in particular has been implicated as an important cue. Recent evidence shows that at longer distances several EPNs take advantage of volatiles that are specifically emitted by roots in response to insect attack. Studies that have revealed these plant-mediated interactions among three trophic levels have been met with some disbelief. Scope This review aims to take away this skepticism by summarizing the evidence for a role of root volatiles as foraging cues for EPNs. To reinforce our argument, we conducted olfactometer assays in which we directly compared the attraction of an EPN species to CO2 and two typical inducible root volatiles. Conclusions The combination of the ubiquitous gas and a more specific root volatile was found to be considerably more attractive than one of the two alone. Hence, future studies on EPN foraging behavior should take into account that CO2 and plant volatiles may work in synergy as attractants for EPNs. Recent research efforts also reveal prospects of exploiting plant-produced signals to improve the biological control of insect pests in the rhizosphere.
Resumo:
Soil acidification is a major agricultural problem that negatively affects crop yield. Root systems counteract detrimental passive proton influx from acidic soil through increased proton pumping into the apoplast, which is presumably also required for cell elongation and stimulated by auxin. Here, we found an unexpected impact of extracellular pH on auxin activity and cell proliferation rate in the root meristem of two Arabidopsis mutants with impaired auxin perception, axr3 and brx. Surprisingly, neutral to slightly alkaline media rescued their severely reduced root (meristem) growth by stimulating auxin signaling, independent of auxin uptake. The finding that proton pumps are hyperactive in brx roots could explain this phenomenon and is consistent with more robust growth and increased fitness of brx mutants on overly acidic media or soil. Interestingly, the original brx allele was isolated from a natural stock center accession collected from acidic soil. Our discovery of a novel brx allele in accessions recently collected from another acidic sampling site demonstrates the existence of independently maintained brx loss-of-function alleles in nature and supports the notion that they are advantageous in acidic soil pH conditions, a finding that might be exploited for crop breeding.
Resumo:
The tips of intact maize (cv. LG 11) roots, maintained vertically, were pretreated with a droplet of buffer solution or a bead of anion exchange resin, both containing [214-C]abscisic acid (ABA). A significant basipetal ABA movement was observed and two metabolites of ABA (possibly phaseic acid and dihydrophaseic acid) were found. ABA pretreatment enhanced the gravireaction of 10 mm apical root segments kept both in the dark and in the light. The possibility that ABA could be one of the endogenous growth inhibitors produced or released by the cap cells is discussed.
Resumo:
The unstable rock slope, Stampa, above the village of Flåm, Norway, shows signs of both active and postglacial gravitational deformation over an area of 11 km2. Detailed structural field mapping, annual differential Global Navigation Satellite System (GNSS) surveys, as well as geomorphic analysis of high-resolution digital elevation models based on airborne and terrestrial laser scanning indicate that slope deformation is complex and spatially variable. Numerical modeling was used to investigate the influence of former rockslide activity and to better understand the failure mechanism. Field observations, kinematic analysis and numerical modeling indicate a strong structural control of the unstable area. Based on the integration of the above analyses, we propose that the failure mechanism is dominated by (1) a toppling component, (2) subsiding bilinear wedge failure and (3) planar sliding along the foliation at the toe of the unstable slope. Using differential GNSS, 18 points were measured annually over a period of up to 6 years. Two of these points have an average yearly movement of around 10 mm/year. They are located at the frontal cliff on almost completely detached blocks with volumes smaller than 300,000 m3. Large fractures indicate deep-seated gravitational deformation of volumes reaching several 100 million m3, but the movement rates in these areas are below 2 mm/year. Two different lobes of prehistoric rock slope failures were dated with terrestrial cosmogenic nuclides. While the northern lobe gave an average age of 4,300 years BP, the southern one resulted in two different ages (2,400 and 12,000 years BP), which represent most likely multiple rockfall events. This reflects the currently observable deformation style with unstable blocks in the northern part in between Joasete and Furekamben and no distinct blocks but a high rockfall activity around Ramnanosi in the south. With a relative susceptibility analysis it is concluded that small collapses of blocks along the frontal cliff will be more frequent. Larger collapses of free-standing blocks along the cliff with volumes > 100,000 m3, thus large enough to reach the fjord, cannot be ruled out. A larger collapse involving several million m3 is presently considered of very low likelihood.
Resumo:
Microtubule-associated proteins (MAPs) are essential components necessary for the early growth process of axons and dendrites, and for the structural organization within cells. Both MAP2 and MAP5 are involved in these events, MAP2 occupying a role predominantly in dendrites, and MAP5 being involved in both axonal and dendritic growth. In the chick dorsal root ganglia, pseudo-unipolar sensory neurons have a T-shaped axon and are devoid of any dendrites. Therefore, they offer an ideal model to study the differential expression of MAPs during DRG development, specifically during axonal growth. In this study we have analyzed the expression and localization of MAP2 and MAP5 isoforms during chick dorsal root ganglia development in vivo, and in cell culture. In DRG, both MAPs appeared as early as E5. MAP2 consists of the 3 isoforms MAP2a, b and c. On blots, no MAP2a could be found at any stage. MAP2b increased between E6 and E10 and thereafter diminished slowly in concentration, while MAP2c was found between stages E6 and E10 in DRG. By immunocytochemistry, MAP2 isoforms were mainly located in the neuronal perikarya and in the proximal portion of axons, but could not be localized to distal axonal segments, nor in sciatic nerve at any developmental stage. On blots, MAP5 was present in two isoforms, MAP5a and MAP5b. The concentration of MAP5a was highest at E6 and then decreased to a low level at E18. In contrast, MAP5b increased between E6 and E10, and rapidly decreased after E14. Only MAP5a was present in sciatic nerve up to E14. Immunocytochemistry revealed that MAP5 was localized mainly in axons, although neuronal perikarya exhibited a faint immunostaining. Strong staining of axons was observed between E10 and E14, at a time coincidental to a period of intense axonal outgrowth. After E14 immunolabeling of MAP5 decreased abruptly. In DRG culture, MAP2 was found exclusively in the neuronal perikarya and the most proximal neurite segment. In contrast, MAP5 was detected in the neuronal cell bodies and all along their neurites. In conclusion, MAP2 seems involved in the early establishment of the cytoarchitecture of cell bodies and the proximal axon segment of somatosensory neurons, while MAP5 is clearly related to axonal growth.
Resumo:
Using autoradiographic techniques carried out under precise conditions we previously demonstrated that both sensory neurons and peripheral glial cells in dorsal root ganglia (DRG) or sciatic nerve, possess specific [125I]-labeled T3 binding sites. Thyroid hormone receptors (TR) include several isoforms (TR alpha(1), TR alpha(2), TR beta(1), TR beta(2...)) The present study demonstrates that while sensory neurons and peripheral glial cells both possess functional TR, they express a differential expression of TR isoforms. Using a panel of antisera to specific for the TR alpha-common (alpha(1) and alpha(2)), TR alpha-1 or TR beta-1 isoforms, we detected TRs isoform localization at the cellular level during DRG and sciatic nerve development and regeneration. Immunohistochemical analysis revealed that during embryonic life, sensory neurons express TR alpha-common and TR beta-1 rather than TR alpha-1. The number of TR alpha-common and TR beta-1 positive neurons as well as the intensity of labeling increased during the first two postnatal weeks and remained more or less stable in adult life. TR alpha-1 immunoreactivity, which was undetectable in embryonic sensory neurons, became discreetly visible in neurons after birth. In developing DRG and sciatic nerves, Schwann cells exhibited TR alpha-common and TR alpha-1 rather than TR beta-1 immunolabeling. The appearance of TR alpha-common and alpha-1 isoform immunoreactivity in the sciatic nerve was restricted to a short period ranging from E17 up to two postnatal weeks. By comparing TR alpha-common and TR alpha-1 immunostaining we can deduce that Schwann cells primarily express TR alpha-1. Afterwards, in adult rat sciatic nerve TR alpha isoforms was no more detected. However transection of sciatic nerve caused a reexpression of TR alpha isoforms in degenerating nerve. The prevalence of TR alpha in Schwann cells in vivo was correlated with in vitro results. The differential expression of TR alpha and beta by sensory neurons and Schwann cells indicates that the feedback regulation of circulating thyroid hormone could occur by binding to either the alpha or beta TR isoforms. Moreover, the presence of multiple receptor isoforms in developing sensory neurons suggests that thyroid hormone uses multiple signaling pathways to regulate DRG and sciatic nerve development.
Resumo:
Seventy bacterial isolates from the rhizosphere of tomato were screened for antagonistic activity against the tomato foot and root rot-causing fungal pathogen Fusarium oxysporum f. sp. radicis-lycopersici. One isolate, strain PCL1391, appeared to be an efficient colonizer of tomato roots and an excellent biocontrol strain in an F. oxysporum/tomato test system. Strain PCL1391 was identified as Pseudomonas chlororaphis and further characterization showed that it produces a broad spectrum of antifungal factors (AFFs), including a hydrophobic compound, hydrogen cyanide, chitinase(s), and protease(s). Through mass spectrometry and nuclear magnetic resonance, the hydrophobic compound was identified as phenazine-1-carboxamide (PCN). We have studied the production and action of this AFF both in vitro and in vivo. Using a PCL1391 transposon mutant, with a lux reporter gene inserted in the phenazine biosynthetic operon (phz), we showed that this phenazine biosynthetic mutant was substantially decreased in both in vitro antifungal activity and biocontrol activity. Moreover, with the same mutant it was shown that the phz biosynthetic operon is expressed in the tomato rhizosphere. Comparison of the biocontrol activity of the PCN-producing strain PCL1391 with those of phenazine-1-carboxylic acid (PCA)-producing strains P. fluorescens 2-79 and P. aureofaciens 30-84 showed that the PCN-producing strain is able to suppress disease in the tomato/F. oxysporum system, whereas the PCA-producing strains are not. Comparison of in vitro antifungal activity of PCN and PCA showed that the antifungal activity of PCN was at least 10 times higher at neutral pH, suggesting that this may contribute to the superior biocontrol performance of strain PCL1391 in the tomato/F. oxysporum system.
Resumo:
Peptide signaling presumably occupies a central role in plant development, yet only few concrete examples of receptor-ligand pairs that act in the context of specific differentiation processes have been described. Here we report that second-site null mutations in the Arabidopsis leucine-rich repeat receptor-like kinase gene barely any meristem 3 (BAM3) perfectly suppress the postembryonic root meristem growth defect and the associated perturbed protophloem development of the brevis radix (brx) mutant. The roots of bam3 mutants specifically resist growth inhibition by the CLAVATA3/ENDOSPERM SURROUNDING REGION 45 (CLE45) peptide ligand. WT plants transformed with a construct for ectopic overexpression of CLE45 could not be recovered, with the exception of a single severely dwarfed and sterile plant that eventually died. By contrast, we obtained numerous transgenic bam3 mutants transformed with the same construct. These transgenic plants displayed a WT phenotype, however, supporting the notion that CLE45 is the likely BAM3 ligand. The results correlate with the observation that external CLE45 application represses protophloem differentiation in WT, but not in bam3 mutants. BAM3, BRX, and CLE45 are expressed in a similar spatiotemporal trend along the developing protophloem, up to the end of the transition zone. Induction of BAM3 expression upon CLE45 application, ectopic overexpression of BAM3 in brx root meristems, and laser ablation experiments suggest that intertwined regulatory activity of BRX, BAM3, and CLE45 could be involved in the proper transition of protophloem cells from proliferation to differentiation, thereby impinging on postembryonic growth capacity of the root meristem.