41 resultados para Rocks, Siliceous
em Université de Lausanne, Switzerland
Resumo:
Petrographic, mineralogical, and stable isotopes (delta C-13, delta O-18 values) compositions were used to characterise marbles and sedimentary carbonate rocks from central Morocco, which are considered to be a likely source of ornamental and building material from Roman time to the present day. This new data set was used in the frame of an archaeometric provenance study on Roman artefacts from the town of Thamusida (Kenitra, north Morocco), to assess the potential employment of these rocks for the manufacture of the archaeological materials. A representative set of samples from marbles and other carbonate rocks (limestone, dolostone) were collected in several quarries and outcrops in the Moroccan Meseta, in a region extending from the Meknes-Khenifra alignment to the Atlantic Ocean. All the samples were studied using a petrographic, mineralogical and geochemical methods. The petrographic and minerological investigations (optical microscopy, electron microscopy, X-ray diffraction) allowed to group the carbonate rocks in limestones, foliated limestone, diagenetic breccias and dolostone. The limestones could be further grouped as mudstones, wackestones-packstones, crinoid grainstones, oolitic grainstone and floatstones. Textural differences allowed to define marbles varieties. The stable carbon and oxygen isotope composition proved to be quite useful in the discrimination of marble sources, with apparently less discriminatory potential for carbonate rocks.
Resumo:
The deep-sea sponge Monorhaphis chuni forms giant basal spicules, which can reach lengths of 3 m; they represent the largest biogenic silica structures on Earth that is formed from an individual metazoan. The spicules offer a unique opportunity to record environmental change of past oceanic and climatic conditions. A giant spicule collected in the East China Sea in a depth of 1110 m was investigated. The oxygen isotopic composition and Mg/Ca ratios determined along center-to-surface segments are used as geochemical proxies for the assessment of seawater paleotemperatures. Calculations are based on the assumption that the calculated temperature near the surface of the spicule is identical with the average ambient temperature of 4 degrees C. A seawater temperature of 1.9 degrees C is inferred for the beginning of the lifespan of the Monorhaphis specimen. The temperature increases smoothly to 2.3 degrees C, to be followed by sharply increased and variable temperatures up to 6-10 degrees C. In the outer part of the spicule, the inferred seawater temperature is about 4 degrees C. The lifespan of the spicule can be estimated to 11,000 +/- 3000 years using the long-term trend of the inferred temperatures fitted to the seawater temperature age relationships since the Last Glacial Maximum. Specimens of Monorhaphis therefore represents one the oldest living animals on Earth. The remarkable temperature spikes of the ambient seawater occurring 9500-3100 years B.P. are explained by discharges of hydrothermal fluids in the neighborhood of the spicule. The irregular lamellar organization of the spicule and the elevated Mn concentrations during the high-temperature growth are consistent with a hydrothermal fluid input. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Detailed field mapping and paleontological dating in the central and southeastern Nicoya Peninsula has revealed Late Cretaceous and Paleogene radiolarian-bearing siliceous mudstones. These rocks belong to two terranes (Matambfi and Manzanillo) that are partially contemporaneous with the Nicoya Complex, but are genetically different. While the Nicoya Complex is formed exclusively by intraplate igneous rocks with associated radiolarites, the studied sections include variable amounts of are-derived volcanic and terrigenous materials. These fore-arc terranes include mafic to intermediate volcaniclastics and associated pelagic and hemipelagic rocks rich in biogenic silica. Radiolarian preservation in these sediments is often enhanced by the presence of silica-saturated volcanic tuffs and debris. Seven out of 29 samples from different outcrops yielded relatively well-preserved radiolarian faunas. In total, 60 species belonging to 34 genera were present in these faunas, ranging in age from middle Turonian-Santonian to late Thanetian-Ypresian.
Resumo:
Agates from the Bighorn district in Montana (USA), the so-called Dryhead area, and their adjacent host rocks have been examined in the present study. Analyses by XRD, polarizing microscopy, LA-ICP-MS, cathodoluminescence (CL), SEM and of oxygen isotopes were performed to obtain information surrounding the genesis of this agate type. Investigations of the agate microstructure by polarizing microscopy and CL showed that chalcedony layers and macrocrystalline quartz crystals may have formed by crystallization from the same silica source by a process of self-organization. High defect densities and internal structures (e. g. sector zoning) of quartz indicate that crystallization went rapidly under non-equilibrium conditions. Most trace-element contents in macrocrystalline quartz are less than in chalcedony due to a process of `self-purification', which also caused the formation of Fe oxide inclusions and spherules. Although the agates formed in sedimentary host rocks, analytical data indicate participation of hydrothermal fluids during agate formation. Trace elements (REE distribution patterns, U contents up to 70 ppm) and CL features of agate (transient blue CL), as well as associated minerals (fluorite, REE carbonates) point to the influence of hydrothermal processes on the genesis of the Dryhead agates. However, formation temperatures <120 degrees C were calculated from O-isotope compositions between 28.9 parts per thousand (quartz) and 32.2 parts per thousand (chalcedony).
Resumo:
Li contents [Li] and isotopic composition (delta Li-7) of mafic minerals (mainly amphibole and clinopyroxene) from the alkaline to peralkaline Ilimaussaq plutonic complex, South Greenland, track the behavior of Li and its isotopes during magmatic differentiation and final cooling of an alkaline igneous system. [Li] in amphibole increase from < 10 ppm in Caamphiboles of the least differentiated unit to >3000 ppm in Na-amphiboles of the highly evolved units. In contrast, [Li] in clinopyroxene are comparatively low (<85 ppm) and do not vary systematically with differentiation. The distribution of Li between amphibole and pyroxene is controlled by the major element composition of the minerals (Ca-rich and Na-rich, respectively) and changes in oxygen fugacity (due to Li incorporation via coupled substitution with ferric iron) during magmatic differentiation. delta(7) Li values of all minerals span a wide range from + 17 to - 8 parts per thousand, with the different intrusive units of the complex having distinct Li isotopic systematics. Amphiboles, which dominate the Li budget of whole-rocks from the inner part of the complex, have constant delta Li-7 of + 1.8 +/- 2.2 parts per thousand (2 sigma, n = 15). This value reflects a homogeneous melt reservoir and is consistent with their mantle derivation, in agreement with published O and Nd isotopic data. Clinopyroxenes of these samples are consistently lighter, with Delta Li-7(amph-cpx). as large as 8 parts per thousand and are thus not in Li isotope equilibrium. These low values probably reflect late-stage diffusion of Li into clinopyroxene during final cooling of the rocks, thus enriching the clinopyroxene in 6 Li. At the margin of the complex delta(7) Li in the syenites increases systematically, from +2 to high values of + 14 parts per thousand. This, coupled with the observed Li isotope systematics of the granitic country rocks, reflects post-magmatic open-system processes occurring during final cooling of the intrusion. Although the shape and magnitude of the Li isotope and elemental profiles through syenite and country rock are suggestive of diffusion-driven isotope fractionation, they cannot be modeled by one-dimensional diffusive transport and point to circulation of a fluid having a high 67 Li value (possibly seawater) along the chilled contact. In all, this study demonstrates that Li isotopes can be used to identify complex fluid- and diffusion-governed processes taking place during the final cooling of such rocks. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
The geological evolution of the northern Peru convergent margin can be traced using samples collected during deep-sea dives of the submersible Nautile. In the Paita area (5 degrees-6 degrees S), the sedimentary sequence was intensively sampled along the main scarp of the middle slope area. It consists of Upper Miocene (7-9 Ma) to Pleistocene siltstone, sandstone and rare dolostone. The age distribution of these samples is the basis for a new geologic interpretation of the multichannel seismic line CDP3. Siliceous microfossils (both diatoms and radiolarians) show influence of both cold and temperate waters (local species mixed with upwelling ones). Diatom assemblages studied from the NP1-13 and NP1-15 dives bear a strong resemblance to assemblages from the Pisco Formation of southern Peru. Micropaleontological data from siliceous microfossils, provide evidence for two main unconformities, one is at the base of the Quaternary sequence and the other corresponds to a hiatus of 1 Myr, separating the Upper Miocene (7-8 Ma) sediments from uppermost Miocene (5-6 Ma) sediments. During the past 400 kyr, a wide rollover fold developed in the middle slope area associated with a major seaward dipping detachment fault. A catastrophic debris avalanche occurred as the result of an oversteepening of the landward flank of the rollover fold. The gravity failure of the slope, recognized by SeaBEAM and hydrosweep mapping, displaced enough material to produce a destructive tsunami which occurred 13.8 +/- 2.7 kyr ago.
Resumo:
Conventional U-Pb ages on zircon and monazite demonstrate that granites and gabbros intruded during a short time span of 5 Ma between 293 and 288 Ma in several polycyclic basement units of the Western Austroalpine domain. This bimodal activity reflects increasing underplating of an upwelling mantle at the base of a thinning post-Variscan continental crust.
Resumo:
A continuous carbon isotope curve from Middle-Upper Jurassic pelagic carbonate rocks was acquired from two sections in the southern part of the Umbria-Marche Apennines in central Italy. At the Colle Bertone section (Terni) and the Terminilletto section (Rieti), the Upper Toarcian to Bajocian Calcari e Marne a Posidonia Formation and the Aalenian to Kimmeridgian Calcari e Marne a Posidonia and Calcari Diasprigni formations were sampled, respectively. Biostratigraphy in both sections is based on rich assemblages of calcareous nannofossils and radiolarians, as well as some ammonites found in the upper Toarcian-Bajocian interval. Both sections revealed a relative minimum of delta(13)C(PDB) close to + 2 parts per thousand in the Aalenian and a maximum around 3.5 parts per thousand in early Bajocian, associated with an increase in visible chert. In basinal sections in Umbria-Marche, this interval includes the very cherry base of the Calcari Diasprigni Formation (e.g. at Valdorbia) or the chert-rich uppermost portion of the Calcari a Posidonia (e.g at Bosso). In the Terminilletto section, the Bajocian-early Barthonian interval shows a gradual decrease in delta(13)C(PDB) values and a low around 2.3 parts per thousand. This part of the section is characterised by more than 40 m of almost chart-free limestones and correlates with a recurrence of limestone-rich facies in basinal sections at Valdorbia. A double peak with values of delta(13)C(PDB) around + 3 parts per thousand was observed in the Callovian and Oxfordian, constrained by well preserved radiolarian faunas. The maxima lie in the Callovian and the middle Oxfordian, and the minimum between the two peaks should be near the Callovian/Oxfordian boundary. In the Terminilletto section, visible chert increases together with delta(13)C(PDB) values from the middle Bathonian and reaches peak values in the Callovian-Oxfordian. In basinal sections in Umbria-Marche, a sharp increase in visible chert is observed at this level within the Calcari Diasprigni. A drop of delta(13)C values towards + 2 parts per thousand occurs in the Kimmeridgian and coincides with a decrease of visible chert in outcrop. The observed delta(13)C positive anomalies during the early Bajocian and the Callovian-Oxfordian may record changes in global climate towards warmer, more humid periods characterised by increased nutrient mobilisation and increased carbon burial. High biosiliceous (radiolarians, siliceous sponges) productivity and preservation appear to coincide with the delta(13)C positive anomalies, when the production of platform carbonates was subdued and ceased in many areas, with a drastic reduction of periplatform ooze input in many Tethyan basins. The carbon and silica cycles appear to be linked through global warming and increased continental weathering. Hydrothermal events related to extensive rifting and/or accelerated oceanic spreading may be the endogenic driving force that created a perturbation of the exogenic system (excess CO2 into the atmosphere and greenhouse conditions) reflected by the positive delta(13)C shifts and biosiliceous episodes.
Resumo:
Recent isotopic and biochronologic dating has demonstrated that the Gets nappe contains remnants of the oldest part of the oceanic crust of the Alpine Tethys. The ophiolites are associated with deep sea sediments, platform carbonates and continental crustal elements suggesting a transitional environment between continental and oceanic crust. Therefore, the ophiolites from the Gets nappe provide the opportunity to assess the nature of mantle source and the magma evolution during the final rifting stage of the European lithosphere. Trace clement analyses of mafic rocks can he divided into two sets: (1) P, Zr and Y contents are consistent with those of mid-ocean ridge basalts and REE patterns have a P-MORB affinity. (2) P,Zr Ti and Y contents are compatible with within-plate basalts and are characterized by REE spectra similar to that of T-MORB. Both have Nd isotopic compositions similar to those of synrift magma of the Red Sea and to the Rhine Graben. The model ages are in agreement with an LREE-enriched subcontinental mantle source derived from depleted mantle 800 to 900 Ma ago. Minor, trace element and Sm-Nd compositions suggest that these rocks are basaltic relies of an earliest stage of oceanic spreading i.e. an embryonic ocean. Comparison between REE patterns, Nd and Sr isotope compositions, isotopic and biochronologic ages from different Alpine Tethys ophiolites shows that samples with enriched LREE are from the older ophiolitic suites and are relies of the embryonic ocean floor. Later phases of ocean spreading are characterized by basalts that are depleted in LREE.