1 resultado para Rock Friction
em Université de Lausanne, Switzerland
Resumo:
The high density of slope failures in western Norway is due to the steep relief and to the concentration of various structures that followed protracted ductile and brittle tectonics. On the 72 investigated rock slope instabilities, 13 were developed in soft weathered mafic and phyllitic allochthons. Only the intrinsic weakness of such rocks increases the susceptibility to gravitational deformation. In contrast, the gravitational structures in the hard gneisses reactivate prominent ductile or/and brittle fabrics. At 30 rockslides along cataclinal slopes, weak mafic layers of foliation are reactivated as basal planes. Slope-parallel steep foliation forms back-cracks of unstable columns. Folds are specifically present in the Storfjord area, together with a clustering of potential slope failures. Folding increases the probability of having favourably orientated planes with respect to the gravitational forces and the slope. High water pressure is believed to seasonally build up along the shallow-dipping Caledonian detachments and may contribute to destabilization of the rock slope upwards. Regional cataclastic faults localized the gravitational structures at 45 sites. The volume of the slope instabilities tends to increase with the amount of reactivated prominent structures and the spacing of the latter controls the size of instabilities.