3 resultados para Rijksuniversiteit te Gent. Plantentuin
em Université de Lausanne, Switzerland
Resumo:
Background: The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity (MAVS and TRIF) as well as a phosphatase involved in growth factor signaling (TC-PTP). The aim of this study was to identify novel cellular substrates of the NS3-4A protease and to investigate their role in the life cycle and pathogenesis of HCV. Methods: Cell lines inducibly expressing the NS3-4A protease were analyzed in basal as well as interferon- α -stimulated states by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. Candidates fulfilling strin- gent criteria for potential substrates or products of the NS3-4A protease were further investigated in different experimental sys- tems as well as in liver biopsies from patients with chronic hep- atitis C. Results: SILAC coupled with protein separation and mass spectrometry yielded > 5000 proteins of which 21 can- didates were selected for further analyses. These allowed us to identify GPx8, a membrane-associated peroxidase involved in disulfide bond formation in the endoplasmic reticulum, as a novel cellular substrate of the HCV NS3-4A protease. Cleavage occurs at cysteine in position 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic hepatitis C. Further functional studies, involving overexpression and RNA silencing, revealed that GPx8 is a proviral factor involved in viral particle production but not in HCV entry or RNA replica- tion. Conclusions: GPx8 is a proviral host factor cleaved by the HCV NS3-4A protease. Studies investigating the consequences of cleavage for GPx8 function are underway. The identification of novel cellular substrates of the HCV NS3-4A protease should yield new insights into the HCV life cycle and the pathogenesis of hepatitis C and may reveal novel angles for therapeutic inter- vention.
Resumo:
DNA double strand breaks (DSBs) are mainly repaired via homologous recombination (HR) or nonhomologous end joining (NHEJ). These breaks pose severe threats to genome integrity but can also be necessary intermediates of normal cellular processes such as immunoglobulin class switch recombination (CSR). During CSR, DSBs are produced in the G1 phase of the cell cycle and are repaired by the classical NHEJ machinery. By studying B lymphocytes derived from patients with Cornelia de Lange Syndrome, we observed a strong correlation between heterozygous loss-of-function mutations in the gene encoding the cohesin loading protein NIPBL and a shift toward the use of an alternative, microhomology-based end joining during CSR. Furthermore, the early recruitment of 53BP1 to DSBs was reduced in the NIPBL-deficient patient cells. Association of NIPBL deficiency and impaired NHEJ was also observed in a plasmid-based end-joining assay and a yeast model system. Our results suggest that NIPBL plays an important and evolutionarily conserved role in NHEJ, in addition to its canonical function in sister chromatid cohesion and its recently suggested function in HR.
Resumo:
To newly identify loci for age at natural menopause, we carried out a meta-analysis of 22 genome-wide association studies (GWAS) in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 loci newly associated with age at natural menopause (at P < 5 × 10(-8)). Candidate genes located at these newly associated loci include genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG and PRIM1) and immune function (IL11, NLRP11 and PRRC2A (also known as BAT2)). Gene-set enrichment pathway analyses using the full GWAS data set identified exoDNase, NF-κB signaling and mitochondrial dysfunction as biological processes related to timing of menopause.