26 resultados para Rigid surfaces
em Université de Lausanne, Switzerland
Resumo:
The contribution of secretory immunoglobulin A (SIgA) antibodies in the defense of mucosal epithelia plays an important role in preventing pathogen adhesion to host cells, therefore blocking dissemination and further infection. This mechanism, referred to as immune exclusion, represents the dominant mode of action of the antibody. However, SIgA antibodies combine multiple facets, which together confer properties extending from intracellular and serosal neutralization of antigens, activation of non-inflammatory pathways and homeostatic control of the endogenous microbiota. The sum of these features suggests that future opportunities for translational application from research-based knowledge to clinics include the mucosal delivery of bioactive antibodies capable of preserving immunoreactivity in the lung, gastrointestinal tract, the genito-urinary tract for the treatment of infections. This article covers topics dealing with the structure of SIgA, the dissection of its mode of action in epithelia lining different mucosal surfaces and its potential in immunotherapy against infectious pathogens.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are symbiotic soil fungi that are intimately associated with the roots of the majority of land plants. They colonise the interior of the roots and the hyphae extend into the soil. It is well known that bacterial colonisation of the rhizosphere can be crucial for many pathogenic as well as symbiotic plant-microbe interactions. However, although bacteria colonising the extraradical AMF hyphae (the hyphosphere) might be equally important for AMF symbiosis, little is known regarding which bacterial species would colonise AMF hyphae. In this study, we investigated which bacterial communities might be associated with AMF hyphae. As bacterial-hyphal attachment is extremely difficult to study in situ, we designed a system to grow AMF hyphae of Glomus intraradices and Glomus proliferum and studied which bacteria separated from an agricultural soil specifically attach to the hyphae. Characterisation of attached and non-attached bacterial communities was performed using terminal restriction fragment length polymorphism and clone library sequencing of 16S ribosomal RNA (rRNA) gene fragments. For all experiments, the composition of hyphal attached bacterial communities was different from the non-attached communities, and was also different from bacterial communities that had attached to glass wool (a non-living substratum). Analysis of amplified 16S rRNA genes indicated that in particular bacteria from the family of Oxalobacteraceae were highly abundant on AMF hyphae, suggesting that they may have developed specific interactions with the fungi.
Resumo:
Résumé : Le condylome acuminé anal (CAA), transmis par contact sexuel, résulte d'une infection par Human Papilloma Virus (HPV). Son traitement chirurgical est grevé d'un taux de récidive de 4-29%. Le but de cette étude était d'identifier une éventuelle corrélation entre type d'HPV présent dans les CAA excisés chirurgicalement et taux de récidive de la maladie, ? Cette étude rétrospective porte sur 140 patients opérés au Centre Hospitalier Universitaire Vaudois de CAA, entre 1990 et 2005. Le diagnostic lésionnel a été confirmé par un examen histomorphologique. Le(s) type(s) d'HPV présent(s) dans ces lésions a été déterminé par Polymerase Chain Reaction (PCR). Les patients ont donné leur accord à cette analyse et complété un questionnaire. Une éventuelle corrélation entre récidive de CAA, type d'HPV et status HIV a été recherchée. HPV 6 et 11 sont les virus les plus fréquemment découverts (51% et 28%, respectivement) chez les 140 patients (123H/17F). Trente-cinq (25%) d'entre eux ont présenté une récidive. HPV 11 était present chez 19 (41%) sujets. Ceci est statistiquement significatif (P<0.05), en comparaison aux autres HPVs. Il n'y a par contre pas de différence significative entre la fréquence de récidive des 33 (24%) patients HIV-positifs et le reste du collectif. HPV 11 est donc associé à un taux de récidive de CAA significativement élevé. Un suivi strict des patients atteints est nécessaire pour identifier une récidive et la traiter sans délai, notamment lorsque HPV 11 est present. Ces résultats innovateurs soulèvent la question de la nécessité de pratiquer une typisation virale systématique sur les lésions excisées. La justification d'une telle attitude demande toutefois encore d'être confirmée.
Resumo:
Bacteria can survive on hospital textiles and surfaces, from which they can be disseminated, representing a source of health care-associated infections (HCAIs). Surfaces containing copper (Cu), which is known for its bactericidal properties, could be an efficient way to lower the burden of potential pathogens. The antimicrobial activity of Cu-sputtered polyester surfaces, obtained by direct-current magnetron sputtering (DCMS), against methicillin-resistant Staphylococcus aureus (MRSA) was tested. The Cu-polyester microstructure was characterized by high-resolution transmission electron microscopy to determine the microstructure of the Cu nanoparticles and by profilometry to assess the thickness of the layers. Sputtering at 300 mA for 160 s led to a Cu film thickness of 20 nm (100 Cu layers) containing 0.209% (wt/wt) polyester. The viability of MRSA strain ATCC 43300 on Cu-sputtered polyester was evaluated by four methods: (i) mechanical detachment, (ii) microcalorimetry, (iii) direct transfer onto plates, and (iv) stereomicroscopy. The low efficacy of mechanical detachment impeded bacterial viability estimations. Microcalorimetry provided only semiquantitative results. Direct transfer onto plates and stereomicroscopy seemed to be the most suitable methods to evaluate the bacterial inactivation potential of Cu-sputtered polyester surfaces, since they presented the least experimental bias. Cu-polyester samples sputtered for 160 s by DCMS were further tested against 10 clinical MRSA isolates and showed a high level of bactericidal activity, with a 4-log(10) reduction in the initial MRSA load (10(6) CFU) within 1 h. Cu-sputtered polyester surfaces might be of use to prevent the transmission of HCAI pathogens.
Resumo:
A new and original reagent based on the use of highly fluorescent cadmium telluride (CdTe) quantum dots (QDs) in aqueous solution is proposed to detect weak fingermarks in blood on non-porous surfaces. To assess the efficiency of this approach, comparisons were performed with one of the most efficient blood reagents on non-porous surfaces, Acid Yellow 7 (AY7). To this end, four non-porous surfaces were studied, i.e. glass, transparent polypropylene, black polyethylene, and aluminium foil. To evaluate the sensitivity of both reagents, sets of depleted fingermarks were prepared, using the same finger, initially soaked with blood, which was then successively applied on the same surface without recharging it with blood or latent secretions. The successive marks were then cut in halves and the halves treated separately with each reagent. The results showed that QDs were equally efficient to AY7 on glass, polyethylene and polypropylene surfaces, and were superior to AY7 on aluminium. The use of QDs in new, sensitive and highly efficient latent and blood mark detection techniques appears highly promising. Health and safety issues related to the use of cadmium are also discussed. It is suggested that applying QDs in aqueous solution (and not as a dry dusting powder) considerably lowers the toxicity risks.
Resumo:
Mechanically ventilated patients in hospitals are subjected to an increased risk of acquiring nosocomial pneumonia that sometimes has a lethal outcome. One way to minimize the risk could be to make the surfaces on endotracheal tubes antibacterial. In this study, bacterial growth was inhibited or completely prevented by silver ions wet chemically and deposited onto the tube surface. Through the wet chemical treatment developed here, a surface precipitate was formed containing silver chloride and a silver stearate salt. The identity and morphology of the surface precipitate was studied using x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and x-ray powder diffraction. Leaching of silver ions into solution was examined, and bacterial growth on the treated surfaces was assayed using Pseudomonas aeruginosa wild type (PAO1) bacteria. Furthermore, the minimum inhibitory concentration of silver ions was determined in liquid- and solid-rich growth medium as 23 and 18 microM, respectively, for P. aeruginosa.
Resumo:
RAPPORT DE SYNTHÈSE : Chez les patients présentant une pathologie de la colonne cervicale, l'instrumentation des voies aériennes peut s'avérer délicate. En effet, l'impossibilité d'effectuer une extension de la nuque afin d'aligner correctement l'axe oro-pharyngo-trachéal, ainsi que l'ouverture de bouche limitée par la présence d'une minerve cervicale, rendent la laryngoscopie standard extrêmement difficile. Le but de cette étude est de démontrer que l'intubation oro-trachéale avec une minerve cervicale semi-rigide est possible à l'aide d'un vidéolaryngoscope récemment développé, le GlideScope®. Celui-ci est formé d'une lame courbe présentant une angulation accentuée à 60° à partir de son milieu, avec une petite caméra haute résolution et une source lumineuse enchâssées dans la partie inférieure au point d'inflexion. Différents travaux ont montré les avantages du GlideScope® par rapport à la lame de Macintosh standard "pour l'instrumentation des voies aériennes de routine ou en situation difficile. Après acceptation par la Commission d'Ethique, 50 patients, adultes consentants et programmés pour une intervention chirurgicale élective nécessitant une anesthésie générale ont été inclus dans cette étude. Malgré la présence d'une minerve cervicale semi-rigide Philadelphia® Patriot correctement positionnée et la tête fixée à la table d'opération, tous les patients ont pu être intubés a l'aide du GlideScope®. Aucune complication n'a été documentée pendant la procédure ou en post-opératoire. De plus, nous avons démontré que dans cette situation la visualisation des structures laryngées est significativement améliorée grâce au GlideScope®, par rapport à la lame de Macintosh utilisée lors de toute intubation standard. En conclusion, l'intubation oro-trachéale chez les patients ayant une minerve cervicale et la tête fixée est possible à l'aide du GlideScope®. La meilleure façon de sécuriser les voies aériennes chez les patients présentant une instabilité de la colonne cervicale est un sujet fortement débattu. L'utilisation du GlideScope® pourrait s'avérer une alternative intéressante, en particulier dans les situations d'urgence.
Resumo:
Application of cervical collars may reduce cervical spine movements but render tracheal intubation with a standard laryngoscope difficult if not impossible. We hypothesised that despite the presence of a Philadelphia Patriot (R) cervical collar and with the patient's head taped to the trolley, tracheal intubation would be possible in 50 adult patients using the GlideScope (R) and its dedicated stylet. Laryngoscopy was attempted using a Macintosh laryngoscope with a size 4 blade, and the modified Cormack-Lehane grade was scored. Subsequently, laryngoscopy with the GlideScope was graded and followed by tracheal intubation. All patients' tracheas were successfully intubated with the GlideScope. The median (IQR) intubation time was 50 s (43-61 s). The modified Cormack-Lehane grade was 3 or 4 at direct laryngoscopy. It was significantly reduced with the GlideScope (p < 0.0001), reaching grade 2a in most patients. Tracheal intubation in patients wearing a semi-rigid collar and having their head taped to the trolley is possible with the help of the GlideScope.
Resumo:
Background: In patients with cervical spine injury, a cervical collar may prevent cervical spine movements but renders tracheal intubation with a standard laryngoscope difficult if not impossible. We hypothesized that despite the presence of a semi-rigid cervical collar and with the patient's head taped to the trolley, we would be able to intubate all patients with the GlideScopeR and its dedicated stylet. Methods: 50 adult patients (ASA 1 or 2, BMI ≤35 kg/m2) scheduled for elective surgical procedures requiring tracheal intubation were included. After standardized induction of general anesthesia and neuromuscular blockade, the neck was immobilized with an appropriately sized semi-rigid Philadelphia Patriot® cervical collar, the head was taped to the trolley. Laryngoscopy was attempted using a Macintosh laryngoscope blade 4 and the modified Cormack Lehane grade was noted. Subsequently, laryngoscopy with the GlideScopeR was graded and followed by oro-tracheal intubation. Results: All patients were successfully intubated with the GlideScopeR and its dedicated stylet. The median intubation time was 50 sec [43; 61]. The modified Cormack Lehane grade was 3 or 4 at direct laryngoscopy. It was significantly reduced with the GlideScopeR (p <0.0001), reaching 2a in most of patients. Maximal mouth opening was significantly reduced with the cervical collar applied, 4.5 cm [4.5; 5.0] vs. 2.0 cm [1.8; 2.0] (p <0.0001). Conclusions: The GlideScope® allows oro-tracheal intubation in patients having their cervical spine immobilized by a semi-rigid collar and their head taped to the trolley. It furthermore decreases significantly the modified Cormack Lehane grade.
Resumo:
At mucosal surfaces, secretory IgA (SIgA) antibodies serve as the first line of defense against microorganisms through a mechanism called immune exclusion that prevents interaction of neutralized antigens with the epithelium. In addition, SIgA plays a role in the immune balance of the epithelial barrier through selective adhesion to M cells in intestinal Peyer's patches. This mediates the transepithelial retro-transport of the antibody and associated antigens from the intestinal lumen to underlying gut-associated organized lymphoid tissue. In Peyer's patches, SIgA-based immune complexes are internalized by underlying antigen-presenting cells, leaving the antigen with masked epitopes, a form that limits the risk of overwhelming the local immune protection system with danger signals. This translates into the onset of mucosal and systemic responses associated with production of anti-inflammatory cytokines and limited activation of antigen-presenting cells. In the gastrointestinal tract, SIgA exhibits thus properties of a neutralizing agent (immune exclusion) and of an immunopotentiator inducing effector immune responses in a noninflammatory context favorable to preserve local homeostasis.
Resumo:
A simple wipe sampling procedure was developed for the surface contamination determination of ten cytotoxic drugs: cytarabine, gemcitabine, methotrexate, etoposide phosphate, cyclophosphamide, ifosfamide, irinotecan, doxorubicin, epirubicin and vincristine. Wiping was performed using Whatman filter paper on different surfaces such as stainless steel, polypropylene, polystyrol, glass, latex gloves, computer mouse and coated paperboard. Wiping and desorption procedures were investigated: The same solution containing 20% acetonitrile and 0.1% formic acid in water gave the best results. After ultrasonic desorption and then centrifugation, samples were analysed by a validated liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in selected reaction monitoring mode. The whole analytical strategy from wipe sampling to LC-MS/MS analysis was evaluated to determine quantitative performance. The lowest limit of quantification of 10 ng per wiping sample (i.e. 0.1 ng cm(-2)) was determined for the ten investigated cytotoxic drugs. Relative standard deviation for intermediate precision was always inferior to 20%. As recovery was dependent on the tested surface for each drug, a correction factor was determined and applied for real samples. The method was then successfully applied at the cytotoxic production unit of the Geneva University Hospitals pharmacy.
Resumo:
Secretory IgA (SIgA) plays an important role in the protection and homeostatic regulation of intestinal, respiratory, and urogenital mucosal epithelia separating the outside environment from the inside of the body. This primary function of SIgA is referred to as immune exclusion, a process that limits the access of numerous microorganisms and mucosal antigens to these thin and vulnerable mucosal barriers. SIgA has been shown to be involved in avoiding opportunistic pathogens to enter and disseminate in the systemic compartment, as well as tightly controlling the necessary symbiotic relationship existing between commensals and the host. Clearance by peristalsis appears thus as one of the numerous mechanisms whereby SIgA fulfills its function at mucosal surfaces. Sampling of antigen-SIgA complexes by microfold (M) cells, intimate contact occurring with Peyer's patch dendritic cells (DC), down-regulation of inflammatory processes, modulation of epithelial, and DC responsiveness are some of the recently identified processes to which the contribution of SIgA has been underscored. This review aims at presenting, with emphasis at the biochemical level, how the molecular complexity of SIgA can serve these multiple and non-redundant modes of action.