277 resultados para Reverse eutectoid reaction
em Université de Lausanne, Switzerland
Resumo:
La douleur neuropathique est définie comme une douleur causée par une lésion du système nerveux somato-sensoriel. Elle se caractérise par des douleurs exagérées, spontanées, ou déclenchées par des stimuli normalement non douloureux (allodynie) ou douloureux (hyperalgésie). Bien qu'elle concerne 7% de la population, ses mécanismes biologiques ne sont pas encore élucidés. L'étude des variations d'expressions géniques dans les tissus-clés des voies sensorielles (notamment le ganglion spinal et la corne dorsale de la moelle épinière) à différents moments après une lésion nerveuse périphérique permettrait de mettre en évidence de nouvelles cibles thérapeutiques. Elles se détectent de manière sensible par reverse transcription quantitative real-time polymerase chain reaction (RT- qPCR). Pour garantir des résultats fiables, des guidelines ont récemment recommandé la validation des gènes de référence utilisés pour la normalisation des données ("Minimum information for publication of quantitative real-time PCR experiments", Bustin et al 2009). Après recherche dans la littérature des gènes de référence fréquemment utilisés dans notre modèle de douleur neuropathique périphérique SNI (spared nerve injury) et dans le tissu nerveux en général, nous avons établi une liste de potentiels bons candidats: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) et L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) et hydroxymethyl-bilane synthase (HMBS). Nous avons évalué la stabilité d'expression de ces gènes dans le ganglion spinal et dans la corne dorsale à différents moments après la lésion nerveuse (SNI) en calculant des coefficients de variation et utilisant l'algorithme geNorm qui compare les niveaux d'expression entre les différents candidats et détermine la paire de gènes restante la plus stable. Il a aussi été possible de classer les gènes selon leur stabilité et d'identifier le nombre de gènes nécessaires pour une normalisation la plus précise. Les gènes les plus cités comme référence dans le modèle SNI ont été GAPDH, HMBS, Actb, HPRT1 et 18S. Seuls HPRT1 and 18S ont été précédemment validés dans des arrays de RT-qPCR. Dans notre étude, tous les gènes testés dans le ganglion spinal et dans la corne dorsale satisfont au critère de stabilité exprimé par une M-value inférieure à 1. Par contre avec un coefficient de variation (CV) supérieur à 50% dans le ganglion spinal, 18S ne peut être retenu. La paire de gènes la plus stable dans le ganglion spinal est HPRT1 et Actb et dans la corne dorsale il s'agit de RPL29 et RPL13a. L'utilisation de 2 gènes de référence stables suffit pour une normalisation fiable. Nous avons donc classé et validé Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 et 18S comme gènes de référence utilisables dans la corne dorsale pour le modèle SNI chez le rat. Dans le ganglion spinal 18S n'a pas rempli nos critères. Nous avons aussi déterminé que la combinaison de deux gènes de référence stables suffit pour une normalisation précise. Les variations d'expression génique de potentiels gènes d'intérêts dans des conditions expérimentales identiques (SNI, tissu et timepoints post SNI) vont pouvoir se mesurer sur la base d'une normalisation fiable. Non seulement il sera possible d'identifier des régulations potentiellement importantes dans la genèse de la douleur neuropathique mais aussi d'observer les différents phénotypes évoluant au cours du temps après lésion nerveuse.
Resumo:
BACKGROUND: The reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, highly sensitive laboratory technique to rapidly and easily detect, identify and quantify gene expression. Reliable RT-qPCR data necessitates accurate normalization with validated control genes (reference genes) whose expression is constant in all studied conditions. This stability has to be demonstrated.We performed a literature search for studies using quantitative or semi-quantitative PCR in the rat spared nerve injury (SNI) model of neuropathic pain to verify whether any reference genes had previously been validated. We then analyzed the stability over time of 7 commonly used reference genes in the nervous system - specifically in the spinal cord dorsal horn and the dorsal root ganglion (DRG). These were: Actin beta (Actb), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal proteins 18S (18S), L13a (RPL13a) and L29 (RPL29), hypoxanthine phosphoribosyltransferase 1 (HPRT1) and hydroxymethylbilane synthase (HMBS). We compared the candidate genes and established a stability ranking using the geNorm algorithm. Finally, we assessed the number of reference genes necessary for accurate normalization in this neuropathic pain model. RESULTS: We found GAPDH, HMBS, Actb, HPRT1 and 18S cited as reference genes in literature on studies using the SNI model. Only HPRT1 and 18S had been once previously demonstrated as stable in RT-qPCR arrays. All the genes tested in this study, using the geNorm algorithm, presented gene stability values (M-value) acceptable enough for them to qualify as potential reference genes in both DRG and spinal cord. Using the coefficient of variation, 18S failed the 50% cut-off with a value of 61% in the DRG. The two most stable genes in the dorsal horn were RPL29 and RPL13a; in the DRG they were HPRT1 and Actb. Using a 0.15 cut-off for pairwise variations we found that any pair of stable reference gene was sufficient for the normalization process. CONCLUSIONS: In the rat SNI model, we validated and ranked Actb, RPL29, RPL13a, HMBS, GAPDH, HPRT1 and 18S as good reference genes in the spinal cord. In the DRG, 18S did not fulfill stability criteria. The combination of any two stable reference genes was sufficient to provide an accurate normalization.
Resumo:
Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics.
Resumo:
Monitoring of T-cell responses in genital mucosa has remained a major challenge because of the absence of lymphoid aggregates and the low abundance of T cells. Here we have adapted to genital tissue a sensitive real-time reverse transcription-PCR (TaqMan) method to measure induction of gamma interferon (IFN-gamma) mRNA transcription after 3 h of antigen-specific activation of CD8 T cells. For this purpose, we vaccinated C57BL/6 mice subcutaneously with human papillomavirus type 16 L1 virus-like particles and monitored the induction of CD8 T cells specific to the L1(165-173) H-2D(b)-restricted epitope. Comparison of the responses induced in peripheral blood mononuclear cells and lymph nodes (LN) by L1-specific IFN-gamma enzyme-linked immunospot assay and TaqMan determination of the relative increase in L1-specific IFN-gamma mRNA induction normalized to the content of CD8b mRNA showed a significant correlation, despite the difference in the readouts. Most of the cervicovaginal tissues could be analyzed by the TaqMan method if normalization to glyceraldehyde-3-phosphate dehydrogenase mRNA was used and a significant L1-specific IFN-gamma induction was found in one-third of the immunized mice. This local response did not correlate with the immune responses measured in the periphery, with the exception of the sacral LN, an LN draining the genital mucosa, where a significant correlation was found. Our data show that the TaqMan method is sensitive enough to detect antigen-specific CD8 T-cell responses in the genital mucosa of individual mice, and this may contribute to elaborate effective vaccines against genital pathogens.
Resumo:
Telomerase activity (TA) is detected in most human cancers but, with few exceptions, not in normal somatic cells. Little is known about TA in soft tissue tumors. We have examined a series of benign and malignant soft tissue tumors for TA using the telomerase repeat amplification protocol assay. Analysis of the expression of the human telomerase reverse transcriptase was also carried out using RT-PCR. TA was undetectable in benign lesions (15 of 15) and low-grade sarcomas (6 of 6) and was detectable in 50% (19 of 38) of intermediate-/high-grade sarcomas. Although the presence of TA in soft tissue tumors is synonymous with malignancy, it is neither a reliable method in making the distinction between reactive/benign and malignant (especially low-grade) lesions nor a reliable marker of tumor aggressiveness. Leiomyosarcomas and storiform/pleomorphic malignant fibrous histiocytomas rarely showed TA, irrespective of their grade. A strong correlation between human telomerase reverse transcriptase mRNA expression and TA was observed, supporting the close relationship between both parameters. No significant relationship was observed between proliferative activity (as assessed by MIB-1 immunolabeling) and TA. We verified that the absence of telomerase expression was not due to the presence of telomerase inhibitors and therefore alternative mechanism(s) for cell immortalization, yet to be determined, seem to be involved in the development and/or maintenance of some soft tissue sarcomas.
Resumo:
Mouse mammary tumor virus (MMTV) encodes a superantigen (SAg) that promotes stable infection and virus transmission. Upon subcutaneous MMTV injection, infected B cells present SAg to SAg-reactive T cells leading to a strong local immune response in the draining lymph node (LN) that peaks after 6 d. We have used the reverse transcriptase inhibitor 3'-azido-3'-deoxythymidine (AZT) to dissect in more detail the mechanism of SAg-dependent enhancement of MMTV infection in this system. Our data show that no detectable B or T cell response to SAg occurs in AZT pretreated mice. However, if AZT treatment is delayed 1-2 d after MMTV injection, a normal SAg-dependent local immune response is observed on day 6. Quantitation of viral DNA in draining LN of these infected mice indicates that a 4,000-fold increase in the absolute numbers of infected cells occurs between days 2 and 6 despite the presence of AZT. Furthermore MMTV DNA was found preferentially in surface IgG+ B cells of infected mice and was not detectable in SAg-reactive T cells. Collectively our data suggest that MMTV infection occurs preferentially in B cells without SAg involvement and is completed 1-2 d after virus challenge. Subsequent amplification of MMTV infection between days 2 and 6 requires SAg expression and occurs in the absence of any further requirement for reverse transcription. We therefore conclude that clonal expansion of infected B cells via cognate interaction with SAg-reactive T cells is the predominant mechanism for increasing the level of MMTV infection. Since infected B cells display a memory (surface IgG+) phenotype, both clonal expansion and possibly longevity of the virus carrier cells may contribute to stable MMTV infection.
Resumo:
The genotyping of human papillomaviruses (HPV) is essential for the surveillance of HPV vaccines. We describe and validate a low-cost PGMY-based PCR assay (PGMY-CHUV) for the genotyping of 31 HPV by reverse blotting hybridization (RBH). Genotype-specific detection limits were 50 to 500 genome equivalents per reaction. RBH was 100% specific and 98.61% sensitive using DNA sequencing as the gold standard (n = 1,024 samples). PGMY-CHUV was compared to the validated and commercially available linear array (Roche) on 200 samples. Both assays identified the same positive (n = 182) and negative samples (n = 18). Seventy-six percent of the positives were fully concordant after restricting the comparison to the 28 genotypes shared by both assays. At the genotypic level, agreement was 83% (285/344 genotype-sample combinations; κ of 0.987 for single infections and 0.853 for multiple infections). Fifty-seven of the 59 discordant cases were associated with multiple infections and with the weakest genotypes within each sample (P < 0.0001). PGMY-CHUV was significantly more sensitive for HPV56 (P = 0.0026) and could unambiguously identify HPV52 in mixed infections. PGMY-CHUV was reproducible on repeat testing (n = 275 samples; 392 genotype-sample combinations; κ of 0.933) involving different reagents lots and different technicians. Discordant results (n = 47) were significantly associated with the weakest genotypes in samples with multiple infections (P < 0.0001). Successful participation in proficiency testing also supported the robustness of this assay. The PGMY-CHUV reagent costs were estimated at $2.40 per sample using the least expensive yet proficient genotyping algorithm that also included quality control. This assay may be used in low-resource laboratories that have sufficient manpower and PCR expertise.
Resumo:
The scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1) is a modulator of the c-Jun N-terminal kinase (JNK) activity, which has been implicated in pleiotrophic cellular functions including cell differentiation, division, and death. In this study, we described the presence of IB1/JIP-1 in epithelium of the rat prostate as well as in the human prostatic LNCaP cells. We investigated the functional role of IB1/JIP-1 in LNCaP cells exposed to the proapoptotic agent N-(4-hydroxyphenyl)retinamide (4-HPR) which induced a reduction of IB1/JIP-1 content and a concomittant increase in JNK activity. Conversely, IB1/JIP-1 overexpression using a viral gene transfer prevented the JNK activation and the 4-HPR-induced apoptosis was blunted. In prostatic adenocarcinoma cells, the neuroendocrine (NE) phenotype acquisition is associated with tumor progression and androgen independence. During NE transdifferentiation of LNCaP cells, IB1/JIP-1 levels were increased. This regulated expression of IB1/JIP-1 is secondary to a loss of the neuronal transcriptional repressor neuron restrictive silencing factor (NRSF/REST) function which is known to repress IB1/JIP-1. Together, these results indicated that IB1/JIP-1 participates to the neuronal phenotype of the human LNCaP cells and is a regulator of JNK signaling pathway.
Resumo:
Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.
Resumo:
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.
When the Line is Crossed... : Paths to Control and Sanction Behaviour Necessitating a State Reaction
Resumo:
The article presents a special form of a European comparative synopsis. For this case examples have been chosen ranging from administrative or minor (criminal) offences to increasingly serious offences and offenders. In this way it can be comparatively demonstrated how the criminal justice systems studied handle specific cases and whether they do so in a similar or different way.
Resumo:
PURPOSE: Glucocorticoids are used to treat macular edema, although the mechanisms underlying this effect remain largely unknown. The authors have evaluated in the normal and endotoxin-induced uveitis (EIU) rats, the effects of dexamethasone (dex) and triamcinolone acetonide (TA) on potassium channel Kir4.1 and aquaporin-4 (AQP4), the two main retinal Müller glial (RMG) channels controlling retinal fluid movement. METHODS: Clinical as well as relatively low doses of dex and TA were injected in the vitreous of normal rats to evaluate their influence on Kir4.1 and AQP4 expression 24 hours later. The dose-dependent effects of the two glucocorticoids were investigated using rat neuroretinal organotypic cultures. EIU was induced by footpad lipopolysaccharide injection, without or with 100 nM intraocular dex or TA. Glucocorticoid receptor and channel expression levels were measured by quantitative PCR, Western blot, and immunohistochemistry. RESULTS: The authors found that dex and TA exert distinct and specific channel regulations at 24 hours after intravitreous injection. Dex selectively upregulated Kir4.1 (not AQP4) in healthy and inflamed retinas, whereas TA induced AQP4 (not Kir4.1) downregulation in normal retina and upregulation in EIU. The lower concentration (100 nM) efficiently regulated the channels. Moreover, in EIU, an inflammatory condition, the glucocorticoid receptor was downregulated in the retina, which was prevented by intravitreous injections of the low concentration of dex or TA. CONCLUSIONS: The results show that dex and TA are far from being equivalent to modulate RMG channels. Furthermore, the authors suggest that low doses of glucocorticoids may have antiedematous effects on the retina with reduced toxicity.