50 resultados para Respiratory system abnormalities
em Université de Lausanne, Switzerland
Resumo:
Paralysis with pancuronium bromide is used in newborn infants to facilitate ventilatory support during respiratory failure. Changes in lung mechanics have been attributed to paralysis. The aim of this study was to examine whether or not paralysis per se has an influence on the passive respiratory mechanics, resistance (Rrs) and compliance (Crs) of the respiratory system in newborn infants. In 30 infants with acute respiratory failure, Rrs was measured during paralysis with pancuronium bromide and after stopping pancuronium bromide (group A). Rrs was also measured in an additional 10 ventilated infants in a reversed fashion (group B): Rrs was measured first in nonparalysed infants and then they were paralysed, mainly for diagnostic procedures, and the Rrs measurement repeated. As Rrs is highly dependent on lung volume, several parameters, that depend directly on lung volume were recorded: inspiratory oxygen fraction (FI,O2), arterial oxygen tension/alveolar oxygen tension (a/A) ratio and volume above functional residual capacity (FRC). In group A, the Rrs was not different during (0.236+/-0.09 cmH2O x s x mL(-1)) and after (0.237+/-0.07 cmH2O x s x mL(-1)) paralysis. Also, in group B, Rrs did not change (0.207+/-0.046 versus 0.221+/-0.046 cm x s x mL(-1) without versus with pancuronium bromide). FI,O2, a/A ratio and volume above FRC remained constant during paralysis. These data demonstrate that paralysis does not influence the resistance of the total respiratory system in ventilated term and preterm infants when measured at comparable lung volumes.
Resumo:
Prenatal diagnosis of congenital lung anomalies has increased in recent years as imaging methods have benefitted from technical improvements. The purpose of this pictorial essay is to illustrate typical imaging findings of a wide spectrum of congenital lung anomalies on prenatal US and MRI. Moreover, we propose an algorithm based on imaging findings to facilitate the differential diagnosis, and suggest a follow-up algorithm during pregnancy and in the immediate postnatal period.
Resumo:
OBJECTIVES: To refine the classic definition of, and provide a working definition for, congenital high airway obstruction syndrome (CHAOS) and to discuss the various aspects of long-term airway reconstruction, including the range of laryngeal anomalies and the various techniques for reconstruction. DESIGN: Retrospective chart review. PATIENTS: Four children (age range, 2-8 years) with CHAOS who presented to a single tertiary care children's hospital for pediatric airway reconstruction between 1995 and 2000. CONCLUSIONS: To date, CHAOS remains poorly described in the otolaryngologic literature. We propose the following working definition for pediatric cases of CHAOS: any neonate who needs a surgical airway within 1 hour of birth owing to high upper airway (ie, glottic, subglottic, or upper tracheal) obstruction and who cannot be tracheally intubated other than through a persistent tracheoesophageal fistula. Therefore, CHAOS has 3 possible presentations: (1) complete laryngeal atresia without an esophageal fistula, (2) complete laryngeal atresia with a tracheoesophageal fistula, and (3) near-complete high upper airway obstruction. Management of the airway, particularly in regard to long-term reconstruction, in children with CHAOS is complex and challenging.
Resumo:
Introduction: Bioaerosols such as grain dust (GD) elicit direct immunological reactions within the human respiratory system. Workplace-dependent exposure to GD may induce asthma, chronic bronchitis, and hypersensitivity pneumonitis. Aims: To assess the clinical impact of occupational exposure to GD and to determine quantitative biological markers of bioaerosol exposure in grain workers. Methods: This longitudinal study has been conducted from summer 2012 to summer 2013, comprising 6 groups of 30 active workers with different GD exposure patterns (4 groups of grain workers, 2 control groups). Two evaluations at high- and low-exposing seasons take place, during which an occupational and a medical history are questionnaire-assessed, lung function is evaluated by spirometry, airway inflammation is measured by exhaled nitric oxide (eNO) and specific blood IgG and IgE are titrated. Results: The preliminary results are those of 2 of the 4 exposed groups, (harvesters and mill workers), compared to the control groups, at first assessment (n=100). Mean age is 38.4 [years]; 98% are male. Exposed groups differ from controls (p<0.05) in daily contact with animals (57% vs. 40%) and active smoking (39% vs. 11%). Grain workers have more respiratory (50%), nasal (57%), ocular (45%) and dermatologic (36%) occupational symptoms than controls (6.4%, 19%, 16%, 6.4% respectively, p<0.05). Lower mean peak-expiratory-flow (PEF) values (96.1 ± 18.9 vs. 108.2 ± 17.4 [% of predicted], p<0.05) and eNO values (13.9 ± 9.6 vs. 20.5 ± 14.7 [ppm], p<0.05) are observed in the exposed groups. Conclusion: Preliminary results show a higher prevalence of clinical symptoms and a lower mean PEF value in the groups exposed to GD.
Resumo:
Introduction: Bioaerosols such as grain dust, via biologically active agents, elicit local inflammation and direct immunological reactions within the human respiratory system. Workplace-dependent exposure to grain dust (GD) may thus induce asthma, chronic bronchitis, and hypersensitivity pneumonitis. The aim of this study is to assess the clinical impact of occupational exposure to GD and to determine quantitative biological markers of bioaerosol exposure in grain workers. Methods: This longitudinal study has been conducted from summer 2012, to summer 2013, comprising 6 groups of 30 active workers with different GD exposure patterns (4 groups of grain workers, 2 control groups). After obtaining informed consent, two evaluations at high- and low-exposing seasons take place, during which an occupational history and a detailed medical history are questionnaire-assessed, lung function is evaluated by spirometry, airway inflammation is measured by exhaled nitric oxide (eNO), and specific blood IgG and IgE are titrated. The preliminary results presented hereafter are those of two of the four exposed groups, namely harvesters and mill workers, compared to the control groups, at first assessment (n=100). Results: Mean age is 38.4 [years]; 98% are male. Exposed groups differ from controls (p<0.05) in daily contact with animals (57% vs. 40%) and active smoking (39% vs. 11%). Grain workers have more respiratory (50%), nasal (57%), ocular (45%), dermatologic (36%) and systemic (20%) occupational symptoms than controls (6.4%, 19%, 16%, 6.4%, 1.6% respectively, p<0.05). Lower mean peak-expiratory-flow (PEF) values (96.1 ± 18.9 vs. 108.2 ± 17.4 [% of predicted], p<0.05) and eNO values (13.9 ± 9.6 vs. 20.5 ± 14.7 [ppm], p<0.05) are observed in the exposed groups. Conclusion: Preliminary results show a higher prevalence of clinical symptoms and a lower mean PEF value in the exposed groups. Detailed supplementary analyses are pending.
Resumo:
Tobacco consumption is a global epidemic responsible for a vast burden of disease. With pharmacological properties sought-after by consumers and responsible for addiction issues, nicotine is the main reason of this phenomenon. Accordingly, smokeless tobacco products are of growing popularity in sport owing to potential performance enhancing properties and absence of adverse effects on the respiratory system. Nevertheless, nicotine does not appear on the 2011 World Anti-Doping Agency (WADA) Prohibited List or Monitoring Program by lack of a comprehensive large-scale prevalence survey. Thus, this work describes a one-year monitoring study on urine specimens from professional athletes of different disciplines covering 2010 and 2011. A method for the detection and quantification of nicotine, its major metabolites (cotinine, trans-3-hydroxycotinine, nicotine-N'-oxide and cotinine-N-oxide) and minor tobacco alkaloids (anabasine, anatabine and nornicotine) was developed, relying on ultra-high pressure liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-TQ-MS/MS). A simple and fast dilute-and-shoot sample treatment was performed, followed by hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) operated in positive electrospray ionization (ESI) mode with multiple reaction monitoring (MRM) data acquisition. After method validation, assessing the prevalence of nicotine consumption in sport involved analysis of 2185 urine samples, accounting for 43 different sports. Concentrations distribution of major nicotine metabolites, minor nicotine metabolites and tobacco alkaloids ranged from 10 (LLOQ) to 32,223, 6670 and 538 ng/mL, respectively. Compounds of interest were detected in trace levels in 23.0% of urine specimens, with concentration levels corresponding to an exposure within the last three days for 18.3% of samples. Likewise, hypothesizing conservative concentration limits for active nicotine consumption prior and/or during sport practice (50 ng/mL for nicotine, cotinine and trans-3-hydroxycotinine and 25 ng/mL for nicotine-N'-oxide, cotinine-N-oxide, anabasine, anatabine and nornicotine) revealed a prevalence of 15.3% amongst athletes. While this number may appear lower than the worldwide smoking prevalence of around 25%, focusing the study on selected sports highlighted more alarming findings. Indeed, active nicotine consumption in ice hockey, skiing, biathlon, bobsleigh, skating, football, basketball, volleyball, rugby, American football, wrestling and gymnastics was found to range between 19.0 and 55.6%. Therefore, considering the adverse effects of smoking on the respiratory tract and numerous health threats detrimental to sport practice at top level, likelihood of smokeless tobacco consumption for performance enhancement is greatly supported.
Resumo:
The respiratory system and nutrition are linked. Obesity is sometimes seen in chronic obstructive pulmonary disease (COPD), but its prevalence, the morbidity and mortality induced by it are not known. In addition, the prevalence of malnutrition is high in COPD and the more severe the COPD is, the higher percentage of malnutrition is present. Emphysematous patients are more frequently undernourished than those suffering from chronic bronchitis. Malnutrition is the consequence of the hypermetabolism induced by the higher cost of breathing in emphysema. The survival rate of these patients is negatively affected by malnutrition. A careful assessment of nutritional status must be performed in all COPD patients, especially during an episode of acute respiratory failure. When signs of malnutrition are present, a nutritional intervention should be initiated rapidly. An amount of calories sufficient to meet the energy expenditure increased by the disease must be given. Excessive intake may overstress the respiratory system whose functional reserve is limited in COPD. The diet must include a well balanced percentage of fat, carbohydrates and proteins. Preservation of the fat-free mass is the minimum goal to reach in acute respiratory failure. After the resolution of the acute phase, a gain of weight should be attempted within a rehabilitation program.
Resumo:
Tobacco consumption is a global epidemic responsible for a vast burden of disease. With pharmacological properties sought-after by consumers and responsible for addiction issues, nicotine is the main reason of this phenomenon. Accordingly, smokeless tobacco products are of growing popularity in sport owing to potential performance enhancing properties and absence of adverse effects on the respiratory system. Nevertheless, nicotine does not appear on the 2011 World Anti-Doping Agency (WADA) Prohibited List or Monitoring Program by lack of a comprehensive large-scale prevalence survey. Thus, this work describes a one-year monitoring study on urine specimens from professional athletes of different disciplines covering 2010 and 2011. A method for the detection and quantification of nicotine, its major metabolites (cotinine, trans-3-hydroxycotinine, nicotine-N′-oxide and cotinine-N-oxide) and minor tobacco alkaloids (anabasine, anatabine and nornicotine) was developed, relying on ultra-high pressure liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-TQ-MS/MS). A simple and fast dilute-and-shoot sample treatment was performed, followed by hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) operated in positive electrospray ionization (ESI) mode with multiple reaction monitoring (MRM) data acquisition. After method validation, assessing the prevalence of nicotine consumption in sport involved analysis of 2185 urine samples, accounting for 43 different sports. Concentrations distribution of major nicotine metabolites, minor nicotine metabolites and tobacco alkaloids ranged from 10 (LLOQ) to 32,223, 6670 and 538 ng/mL, respectively. Compounds of interest were detected in trace levels in 23.0% of urine specimens, with concentration levels corresponding to an exposure within the last three days for 18.3% of samples. Likewise, hypothesizing conservative concentration limits for active nicotine consumption prior and/or during sport practice (50 ng/mL for nicotine, cotinine and trans-3-hydroxycotinine and 25 ng/mL for nicotine-N′-oxide, cotinine-N-oxide, anabasine, anatabine and nornicotine) revealed a prevalence of 15.3% amongst athletes. While this number may appear lower than the worldwide smoking prevalence of around 25%, focusing the study on selected sports highlighted more alarming findings. Indeed, active nicotine consumption in ice hockey, skiing, biathlon, bobsleigh, skating, football, basketball, volleyball, rugby, American football, wrestling and gymnastics was found to range between 19.0 and 55.6%. Therefore, considering the adverse effects of smoking on the respiratory tract and numerous health threats detrimental to sport practice at top level, likelihood of smokeless tobacco consumption for performance enhancement is greatly supported.
Resumo:
OBJECTIVES: We evaluated the prenatal detection of gastrointestinal obstruction (GIO, including atresia, stenosis, absence or fistula) by routine ultrasonographic examination in an unselected population all over Europe. METHODS: Data from 18 congenital malformation registries in 11 European countries were analysed. These multisource registries used the same methodology. All fetuses/neonates with GIO confirmed within 1 week after birth who had prenatal sonography and were born during the study period (1 July 1996 to 31 December 1998) were included. RESULTS: There were 670 793 births in the area covered and 349 fetuses/neonates had GIO. The prenatal detection rate of GIO was 34%; of these 40% were detected < or = 24 weeks of gestation (WG). A total of 31% (60/192) of the isolated GIO were detected prenatally, as were 38% (59/157) of the associated GIO (p=0.26). The detection rate was 25% for esophageal obstruction (31/122), 52% for duodenal obstruction (33/64), 40% for small intestine obstruction (27/68) and 29% for large intestine obstruction (28/95) (p=0.002). The detection rate was higher in countries with a policy of routine obstetric ultrasound. Fifteen percent of pregnancies were terminated (51/349). Eleven of these had chromosomal anomalies, 31 multiple malformations, eight non-chromosomal recognized syndromes, and one isolated GIO. The participating registries reflect the various national policies for termination of pregnancy (TOP), but TOPs after 24 WG (11/51) do not appear to be performed more frequently in countries with a liberal TOP policy. CONCLUSION: This European study shows that the detection rate of GIO depends on the screening policy and on the sonographic detectability of GIO subgroups.
Resumo:
The aim of the study was to analyse the degree to which gestational age (GA) has been shortened due to prenatal diagnosis of gastrointestinal malformations (GIM). The data source for the study was 14 population-based registries of congenital malformations (EUROCAT). All liveborn infants with GIMs and without chromosomal anomalies, born 1997-2002, were included. The 14 registries identified 1047 liveborn infants with one or more GIMs (oesophageal atresia, duodenal atresia, omphalocele, gastroschisis and diaphragmatic hernia). Median GA at birth was lower in prenatally diagnosed cases for all five malformations, although not statistically significant for gastroschisis. There was little difference in median birthweight by GA for the pre- and postnatally diagnosed infants. The difference in GA at birth between prenatally and postnatally diagnosed infants with GIMs is enough to increase the risk of mortality for the prenatally diagnosed infants. Clinicians need to balance the risk of early delivery against the benefits of clinical convenience when making case management decisions after prenatal diagnosis. Very few studies have been able to show benefits of prenatal diagnosis of congenital malformations for liveborn infants. This may be because the benefits of prenatal diagnosis are outweighed by the problems arising from a lower GA at birth.
Resumo:
Dendritic cells (DCs) are leukocytes specialised in the uptake, processing, and presentation of antigen and fundamental in regulating both innate and adaptive immune functions. They are mainly localised at the interface between body surfaces and the environment, continuously scrutinising incoming antigen for the potential threat it may represent to the organism. In the respiratory tract, DCs constitute a tightly enmeshed network, with the most prominent populations localised in the epithelium of the conducting airways and lung parenchyma. Their unique localisation enables them to continuously assess inhaled antigen, either inducing tolerance to inoffensive substances, or initiating immunity against a potentially harmful pathogen. This immunological homeostasis requires stringent control mechanisms to protect the vital and fragile gaseous exchange barrier from unrestrained and damaging inflammation, or an exaggerated immune response to an innocuous allergen, such as in allergic asthma. During DC activation, there is upregulation of co-stimulatory molecules and maturation markers, enabling DC to activate naïve T cells. This activation is accompanied by chemokine and cytokine release that not only serves to amplify innate immune response, but also determines the type of effector T cell population generated. An increasing body of recent literature provides evidence that different DC subpopulations, such as myeloid DC (mDC) and plasmacytoid DC (pDC) in the lungs occupy a key position at the crossroads between tolerance and immunity. This review aims to provide the clinician and researcher with a summary of the latest insights into DC-mediated pulmonary immune regulation and its relevance for developing novel therapeutic strategies for various disease conditions such as infection, asthma, COPD, and fibrotic lung disease.
Resumo:
Bronchiolitis obliterans (BO) following allogeneic haematopoietic stem cell transplantation (HSCT) affects peripheral airways. Detection of BO is presently delayed by the low sensitivity of spirometry. We examined the relationship between peripheral airway function and time since HSCT, and compared it with spirometry and clinical indices in 33 clinically stable allogeneic HSCT recipients. The following measurements were performed: lung function, exhaled nitric oxide, forced oscillatory respiratory system resistance and reactance, acinar (S(acin)) and conductive airways ventilation heterogeneity and lung clearance index (LCI) measured by multiple breath nitrogen washout. 22 patients underwent repeat visits from which short-term changes were examined. Median time post HSCT was 12 months. Eight patients were clinically diagnosed as having BO. In multivariate analysis, time since HSCT was predicted by S(acin) and forced expiratory volume in 1 s % predicted. 20 patients had abnormal S(acin) with normal spirometry, whereas none had airflow obstruction with normal S(acin). S(acin) and LCI were the only measures to change significantly between two visits, with both worsening. Change in S(acin) was the only parameter to correlate with change in chronic graft-versus-host disease grade. In conclusion, peripheral airways ventilation heterogeneity worsens with time after HSCT. S(acin) may be more sensitive than spirometry in detecting BO at an early stage, which needs confirmation in a prospective study.
Resumo:
OBJECTIVE: To determine the sensitivity of ultrasonography in screening for foetal malformations in the pregnant women of the Swiss Canton of Vaud. STUDY DESIGN: Retrospective study over a period of five years. METHOD: We focused our study on 512 major or minor clinically relevant malformations detectable by ultrasonography. We analysed the global sensitivity of the screening and compared the performance of the tertiary centre with that of practitioners working in private practice or regional hospitals. RESULTS: Among the 512 malformations, 181 (35%) involved the renal and urinary tract system, 137 (27%) the heart, 71 (14%) the central nervous system, 50 (10%) the digestive system, 42 (8%) the face and 31 (6%) the limbs. Global sensitivity was 54.5%. The lowest detection rate was observed for cardiac anomalies, with only 23% correct diagnoses. The tertiary centre achieved a 75% detection rate in its outpatient clinic and 83% in referred patients. Outside the referral centre, the diagnostic rate attained 47%. CONCLUSIONS: Routine foetal examination by ultrasonography in a low-risk population can detect foetal structural abnormalities. Apart from the diagnosis of cardiac abnormalities, the results in the Canton of Vaud are satisfactory and justify routine screening for malformations in a low-risk population. A prerequisite is continuing improvement in the skills of ultrasonographers through medical education.
Resumo:
MVA is a candidate vector for vaccination against pathogens and tumors. Little is known about its behaviour in mucosal tissues. We have investigated the fate and biosafety of MVA, when inoculated by different routes in C57BL/6 mice. Intranasal inoculation targeted the virus to the nasal associated lymphoid tissue and the lungs, whereas systemic inoculation led to distribution of MVA in almost all lymphoid organs, lungs and ovaries. Intravaginal, intrarectal and intragastric inoculations failed to induce efficient infection. After 48 h no virus was detectable any more in the organs analyzed. Upon intranasal inoculation, no inflammatory reactions were detected in the central nervous system as well as the upper and lower airways. These results show the tropism of MVA and indicate that high doses of recombinant MVA are safe when nasally administered, a vaccination route known to elicit strong cellular and humoral immune responses in the female genital tract.
Resumo:
The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs. © 2014 S. Karger AG, Basel.