57 resultados para Respiratory muscle strength
em Université de Lausanne, Switzerland
Resumo:
La faiblesse des muscles respiratoires peut entraîner une dyspnée, un encombrement bronchique et une insuffisance respiratoire potentiellement fatale. L'évaluation de la force musculaire respiratoire s'impose donc dans les affections neuro-musculaires, mais également dans les situations de dyspnée inexpliquée par une première évaluation cardiaque et pulmonaire. À la spirométrie, une faiblesse musculaire est suspectée sur la base de la boucle débit-volume montrant un débit de pointe émoussé et une fin prématurée de l'expiration. Une diminution importante de la capacité vitale en position couchée suggère une paralysie diaphragmatique. La force inspiratoire est mesurée par la pression inspiratoire maximale (PImax) contre une quasi-occlusion des voies aériennes. Ce test relativement difficile est d'interprétation délicate en cas de collaboration insuffisante. La mesure de la pression nasale sniff (SNIP) est une alternative utile, car elle élimine le problème des fuites autour de l'embout buccal et la réalisation du reniflement est facile. De même, la pression trans-diaphragmatique sniff mesure la force du diaphragme au moyen de sondes oesophagienne et gastrique. En cas de collaboration insuffisante, on peut recourir à la stimulation magnétique des nerfs phréniques qui induit une contraction non-volontaire du diaphragme. La force expiratoire est mesurée par la pression expiratoire maximale (PEmax) contre une quasi-occlusion. La force disponible pour tousser est mesurée par la pression gastrique à la toux, ou plus simplement par le débit de pointe à la toux. Chez les patients à risque, la mesure de la force des muscles respiratoires permet d'instaurer à temps une assistance ventilatoire ou à la toux.
Resumo:
Respiratory muscle weakness may induce dyspnoea, secretion retention and respiratory failure. Assessing respiratory muscle strength is mandatory in neuromuscular diseases and in case of unexplained dyspnoea. A step by step approach is recommended, starting with simple volitional tests. Using spirometry, respiratory muscle weakness may be suspected on the basis of an abnormal flow-volume loop or a fall of supine vital capacity. When normal, maximal inspiratory and expiratory pressures against a near complete occlusion exclude significant muscle weakness, but low values are more difficult to interpret. Sniff nasal inspiratory pressure is a useful alternative because it is easy and it eliminates the problem of air leaks around the mouthpiece in patients with neuromuscular disorders. The strength available for coughing is easily assessed by measuring peak cough flow. In most cases, these simple non invasive tests are sufficient to confirm or to eliminate significant respiratory muscle weakness and help the timely introduction of ventilatory support or assisted cough techniques. In a minority of patients, a more complete evaluation is necessary using non volitional tests like cervical magnetic stimulation of phrenic nerves.
Resumo:
Introduction. Respiratory difficulties in athletes are common, especially in adolescents, even in the absence of exercise-induced bronchoconstriction. Immaturity of the respiratory muscles coupling at high respiratory rates could be a potential mechanism. Whether respiratory muscle training (RMT) can positively influence it is yet unknown. Goal. We investigate the effects of RMT on ventilation and performance parameters in adolescent athletes and hypothesize that RMT will enhance respiratory capacity. Methods. 12 healthy subjects (8 male, 4 female, 17±0.5 years) from a sports/study high school class, competitively involved in various sports (minimum of 10 hours per week) underwent respiratory function testing, maximal minute ventilation (MMV) measurements and a maximal treadmill incremental test with VO2max and ventilatory thresholds (VT1 and VT2) determination. They then underwent one month of RMT (4 times/week) using a eucapnic hyperventilation device, with an incremental training program. The same tests were repeated after RMT. Results. Subjects completed 14.8 sessions of RMT, with an increase in total ventilation per session of 211±29% during training. Borg scale evaluation of the RMT session was unchanged or reduced in all subjects, despite an increase in total respiratory work. No changes (p>0.05) were observed pre/post RMT in VO2max (53.4±7.5 vs 51.6±7.7 ml/kg/min), VT2 (14.4±1.4 vs 14.0±1.1 km/h) or Speed max at end of test (16.1±1.7 vs 15.8±1.7 km/h). MVV increased by 9.2% (176.7±36.9 vs 192.9±32.6 l/min, p<0.001) and FVC by 3.3% (6.70±0.75 vs 4.85±0.76 litres, p<0.05). Subjective evaluation of respiratory sensations during exercise and daily living were also improved. Conclusions. RMT improves MMV and FVC in adolescent athletes, along with important subjective respiratory benefits, although no changes are seen in treadmill maximal performance tests and VO2max measurements. RMT can be easily performed in adolescent without side effects, with a potential for improvement in training capacity and overall well-being.
Resumo:
OBJECTIVE: To investigate the relationships between isokinetic knee flexor and extensor muscle strength and physiological and chronological age in young soccer players. MATERIAL AND METHODS: Seventy-nine young, healthy, male soccer players (mean+/-standard deviation age: 12.78+/-2.88, range: 11 to 15) underwent a clinical examination (age, weight, height, body mass index and Tanner puberty stage) and an evaluation of bilateral knee flexor and extensor muscle strength on an isokinetic dynamometer. Participation in the study was voluntary. RESULTS: The peak torque increased progressively (by 50%) between the ages of 11 and 15 and most significantly between 12 to 14. The knee flexor/extensor ratios only decreased significantly between 14 and 15 years of age. Puberty stage was the most important determinant of the peak torque level (ahead of chronological age, weight and height) for all angular velocities (p<0.0001). Muscle strength increased significantly between Tanner stages 1 and 5, with the greatest increase between stages 2 and 4. CONCLUSION: The present study showed that isokinetic muscle strength increases most between 12 and 13 years of age and between Tanner stages 2 and 3. There was strong correlation between muscle strength and physiological age.
Resumo:
Vitamin D is the main hormone of bone metabolism. However, the ubiquitary nature of vitamin D receptor (VDR) suggests potential for widespread effects, which has led to new research exploring the effects of vitamin D on a variety of tissues, especially in the skeletal muscle. In vitro studies have shown that the active form of vitamin D, calcitriol, acts in myocytes through genomic effects involving VDR activation in the cell nucleus to drive cellular differentiation and proliferation. A putative transmembrane receptor may be responsible for nongenomic effects leading to rapid influx of calcium within muscle cells. Hypovitaminosis D is consistently associated with decrease in muscle function and performance and increase in disability. On the contrary, vitamin D supplementation has been shown to improve muscle strength and gait in different settings, especially in elderly patients. Despite some controversies in the interpretation of meta-analysis, a reduced risk of falls has been attributed to vitamin D supplementation due to direct effects on muscle cells. Finally, a low vitamin D status is consistently associated with the frail phenotype. This is why many authorities recommend vitamin D supplementation in the frail patient.
Resumo:
Shrinking lung syndrome (SLS) is an uncommon feature of systemic lupus erythematosus (SLE) characterized by dyspnea, pleuritic chest pain, diaphragmatic elevation, restrictive ventilatory defect and reduced respiratory muscle strength as measured by volitional tests. We report the case of a 28-year-old woman with overlapping features of SLE and Sjögren syndrome who developed severe SLS while receiving corticosteroids and azathioprine for severe polyarthritis. She was treated with a combination of rituximab and cyclophosphamide, which led to a dramatic improvement in her clinical condition and respiratory function tests. The increase in vital capacity was one of the highest among 35 published cases of SLS. Thus, restoring a near-normal lung function is an achievable goal in SLS, and the use of rituximab, with or without concomitant cyclophosphamide, certainly deserves further study in this setting.
Resumo:
Underfeeding causes a significant increase of postoperative complications, particularly respiratory and infectious complications. Thoracic surgery is frequently required in patients suffering wasting diseases (cancer, COPD, cystic fibrosis), which increase the risk of malnutrition. The most important risk factors are preoperative hypoalbuminemia and BMI < 20. The deleterious effects of underfeeding may be corrected by a preoperative nutritional support for 7 to 15 days using oral supplements or enteral feeding: respiratory muscle strength is improved, immunity is restored, and overall complications are reduced. Therefore preoperative diagnosis of underfeeding is of utmost importance. In case of emergency surgery, the nutritional assessment on admission enables the introduction of early postoperative artificial feeding.
Resumo:
PURPOSE: Activity monitoring is considered a highly relevant outcome measure of respiratory rehabilitation. This study aimed to assess the usefulness of a new accelerometric method for characterization of walking activity during a 3-week inpatient rehabilitation program. METHODS: After individual calibration of the accelerometer at different walking speeds, whole-day physical activity was recorded for 15 patients with chronic obstructive pulmonary disease on the first and the last days of the program, and for 10 healthy subjects. Data were expressed as percentage of time spent in inactivity, low level activity, and medium level activity, with the latter corresponding to usual walking speed. RESULTS: The patients spent more time being inactive and less time walking than healthy subjects. At the end of the rehabilitation program, medium level activity had increased from 4% to 7% of total recording time. However, the change was not significant after periods of imposed exercise training were excluded. Walking activity increased to a greater degree among the patients with preserved limb muscle strength at entry to the program. Although health status scores improved, the changes did not correlate with the changes in walking activity. CONCLUSION: The findings lead to the conclusion that this new accelerometric method provides detailed analysis of walking activity during respiratory rehabilitation and may represent an additional useful measure of outcome.
Resumo:
The aging process is associated with gradual and progressive loss of muscle mass along with lowered strength and physical endurance. This condition, sarcopenia, has been widely observed with aging in sedentary adults. Regular aerobic and resistance exercise programs have been shown to counteract most aspects of sarcopenia. In addition, good nutrition, especially adequate protein and energy intake, can help limit and treat age-related declines in muscle mass, strength, and functional abilities. Protein nutrition in combination with exercise is considered optimal for maintaining muscle function. With the goal of providing recommendations for health care professionals to help older adults sustain muscle strength and function into older age, the European Society for Clinical Nutrition and Metabolism (ESPEN) hosted a Workshop on Protein Requirements in the Elderly, held in Dubrovnik on November 24 and 25, 2013. Based on the evidence presented and discussed, the following recommendations are made (a) for healthy older people, the diet should provide at least 1.0-1.2 g protein/kg body weight/day, (b) for older people who are malnourished or at risk of malnutrition because they have acute or chronic illness, the diet should provide 1.2-1.5 g protein/kg body weight/day, with even higher intake for individuals with severe illness or injury, and (c) daily physical activity or exercise (resistance training, aerobic exercise) should be undertaken by all older people, for as long as possible.
Resumo:
Most forms of myopathy may involve the respiratory muscles and progress to respiratory failure. However, the diagnosis of myopathy is seldom considered in an adult patient with no history of muscle disease and presenting with respiratory failure. Nemaline myopathy (NM) is a rare disorder characterized by symmetrical diffuse muscle weakness and rod-like nemaline bodies in muscle fibers. Respiratory muscle involvement is a major determinant of mortality in congenital NM, but is rare in late onset NM. Here, we report that acute or chronic respiratory failure may be caused by NM in subjects with no known history of muscle disease. Adult-onset NM was diagnosed in a 67-year-old woman with chronic respiratory insufficiency. Late onset childhood NM was revealed by respiratory failure in twin sisters aged 31. The diagnosis was established by muscle biopsy and electron microscopy (and mutations in the nebulin gene in the two sisters). Long-term clinical improvement was obtained with non-invasive ventilation (NIV) in the three patients. In conclusion, respiratory failure in an adult patient with no known history may correspond to NM with diaphragm involvement. Long-term outcome may be favorable with NIV.
Resumo:
This study was conducted to analyze whether internal (IR) and external (ER) rotator shoulder muscles weakness and/or imbalance collected through a preseason assessment could be predictors of subsequent shoulder injury during a season in handball players. In preseason, 16 female elite handball players (HPG) and 14 healthy female nonathletes (CG) underwent isokinetic IR and ER strength test with use of a Con-Trex® dynamometer in a seated position with 45° shoulder abduction in scapular plane, at 60, 120 and 240°/s in concentric and at 60°/s in eccentric, for both sides. An imbalanced muscular strength profile was determined using -statistically selected cut-offs from CG values. For HPG, all newly incurred shoulder injuries were reported during the season. There were significant differences between HPG and CG only for dominant eccentric IR strength, ER/IR ratio at 240°/s and for IRecc/ERcon ratio. In HPG, IR and ER strength was higher, and ER/IR ratios lower for dominant than for nondominant side. The relative risk was 2.57 (95%CI: 1.60-3.54; P<0.05) if handball players had an imbalanced muscular strength profile. In youth female handball players IR and ER muscle strength increases on the dominant side without ER/IR imbalances; and higher injury risk was associated with imbalanced muscular strength profile.
Resumo:
In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.
Resumo:
Background: Although there have been many studies on isokinetic shoulder exercises in evaluation and rehabilitation programs, the cardiovascular and metabolic responses of those modes of muscle strength exercises have been poorly investigated. Objective: To analyze cardiovascular and metabolic responses during a standardized test used to study the internal (IR) and external (ER) rotators maximal isokinetic strength. Methods: Four days after an incremental exercise test on cycle ergometer, ten healthy subjects performed an isokinetic shoulder strength evaluation with cardiovascular (Heart rate, HR) and metabolic gas exchange (&Vdot;O_{2}) analysis. The IR and ER isokinetic strength, measured in seated position with 45° of shoulder abduction in scapular plane, was evaluated concentrically at 60, 120 and 240°/s and eccentrically at 60°/s, for both shoulder sides. An endurance test with 30 repetitions at 240°/s was performed at the end of each shoulder side testing. Results: There was a significant increase of mean HR with isokinetic exercise (P< 0.05). Increases of HR was 42-71% over the resting values. During endurance testing, increases of HR was 77-105% over the resting values, and corresponded to 85-86% of the maximal HR during incremental test. Increase of &Vdot;O_{2} during isokinetic exercises was from 6-11 ml/min/kg to 20-43 ml/min/kg. Conclusion: This study performed significant cardiovascular and metabolic responses to isokinetic exercise of rotators shoulder muscles. A warm-up should be performed before maximal high-intensity isokinetic shoulder testing. Our results indicated that observation and supervision are important during testing and/or training sessions, especially in subjects with risk for cardiovascular disorders.