133 resultados para Regressão polinomial local de kernel
em Université de Lausanne, Switzerland
Resumo:
In groundwater applications, Monte Carlo methods are employed to model the uncertainty on geological parameters. However, their brute-force application becomes computationally prohibitive for highly detailed geological descriptions, complex physical processes, and a large number of realizations. The Distance Kernel Method (DKM) overcomes this issue by clustering the realizations in a multidimensional space based on the flow responses obtained by means of an approximate (computationally cheaper) model; then, the uncertainty is estimated from the exact responses that are computed only for one representative realization per cluster (the medoid). Usually, DKM is employed to decrease the size of the sample of realizations that are considered to estimate the uncertainty. We propose to use the information from the approximate responses for uncertainty quantification. The subset of exact solutions provided by DKM is then employed to construct an error model and correct the potential bias of the approximate model. Two error models are devised that both employ the difference between approximate and exact medoid solutions, but differ in the way medoid errors are interpolated to correct the whole set of realizations. The Local Error Model rests upon the clustering defined by DKM and can be seen as a natural way to account for intra-cluster variability; the Global Error Model employs a linear interpolation of all medoid errors regardless of the cluster to which the single realization belongs. These error models are evaluated for an idealized pollution problem in which the uncertainty of the breakthrough curve needs to be estimated. For this numerical test case, we demonstrate that the error models improve the uncertainty quantification provided by the DKM algorithm and are effective in correcting the bias of the estimate computed solely from the MsFV results. The framework presented here is not specific to the methods considered and can be applied to other combinations of approximate models and techniques to select a subset of realizations
Resumo:
In this paper, we develop a data-driven methodology to characterize the likelihood of orographic precipitation enhancement using sequences of weather radar images and a digital elevation model (DEM). Geographical locations with topographic characteristics favorable to enforce repeatable and persistent orographic precipitation such as stationary cells, upslope rainfall enhancement, and repeated convective initiation are detected by analyzing the spatial distribution of a set of precipitation cells extracted from radar imagery. Topographic features such as terrain convexity and gradients computed from the DEM at multiple spatial scales as well as velocity fields estimated from sequences of weather radar images are used as explanatory factors to describe the occurrence of localized precipitation enhancement. The latter is represented as a binary process by defining a threshold on the number of cell occurrences at particular locations. Both two-class and one-class support vector machine classifiers are tested to separate the presumed orographic cells from the nonorographic ones in the space of contributing topographic and flow features. Site-based validation is carried out to estimate realistic generalization skills of the obtained spatial prediction models. Due to the high class separability, the decision function of the classifiers can be interpreted as a likelihood or susceptibility of orographic precipitation enhancement. The developed approach can serve as a basis for refining radar-based quantitative precipitation estimates and short-term forecasts or for generating stochastic precipitation ensembles conditioned on the local topography.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
PURPOSE: The aim of this study was to develop models based on kernel regression and probability estimation in order to predict and map IRC in Switzerland by taking into account all of the following: architectural factors, spatial relationships between the measurements, as well as geological information. METHODS: We looked at about 240,000 IRC measurements carried out in about 150,000 houses. As predictor variables we included: building type, foundation type, year of construction, detector type, geographical coordinates, altitude, temperature and lithology into the kernel estimation models. We developed predictive maps as well as a map of the local probability to exceed 300 Bq/m(3). Additionally, we developed a map of a confidence index in order to estimate the reliability of the probability map. RESULTS: Our models were able to explain 28% of the variations of IRC data. All variables added information to the model. The model estimation revealed a bandwidth for each variable, making it possible to characterize the influence of each variable on the IRC estimation. Furthermore, we assessed the mapping characteristics of kernel estimation overall as well as by municipality. Overall, our model reproduces spatial IRC patterns which were already obtained earlier. On the municipal level, we could show that our model accounts well for IRC trends within municipal boundaries. Finally, we found that different building characteristics result in different IRC maps. Maps corresponding to detached houses with concrete foundations indicate systematically smaller IRC than maps corresponding to farms with earth foundation. CONCLUSIONS: IRC mapping based on kernel estimation is a powerful tool to predict and analyze IRC on a large-scale as well as on a local level. This approach enables to develop tailor-made maps for different architectural elements and measurement conditions and to account at the same time for geological information and spatial relations between IRC measurements.
Resumo:
This article examines the uses of the local/global dichotomy in anthropology. It is argued that the use of these terms as analytical tools tends to lead to a reification of "global forces" seen as external to the local site where the ethnographic study takes place. To avoid endless debates on whether or not the "global" can be the object of ethnographic scrutiny, anthropologists should treat the local and the global as scalar properties of social systems that are generated in the course of historical processes.
Resumo:
The algorithmic approach to data modelling has developed rapidly these last years, in particular methods based on data mining and machine learning have been used in a growing number of applications. These methods follow a data-driven methodology, aiming at providing the best possible generalization and predictive abilities instead of concentrating on the properties of the data model. One of the most successful groups of such methods is known as Support Vector algorithms. Following the fruitful developments in applying Support Vector algorithms to spatial data, this paper introduces a new extension of the traditional support vector regression (SVR) algorithm. This extension allows for the simultaneous modelling of environmental data at several spatial scales. The joint influence of environmental processes presenting different patterns at different scales is here learned automatically from data, providing the optimum mixture of short and large-scale models. The method is adaptive to the spatial scale of the data. With this advantage, it can provide efficient means to model local anomalies that may typically arise in situations at an early phase of an environmental emergency. However, the proposed approach still requires some prior knowledge on the possible existence of such short-scale patterns. This is a possible limitation of the method for its implementation in early warning systems. The purpose of this paper is to present the multi-scale SVR model and to illustrate its use with an application to the mapping of Cs137 activity given the measurements taken in the region of Briansk following the Chernobyl accident.
Resumo:
The aim of the present study was to assess the influence of local environmental olfactory cues on place learning in rats. We developed a new experimental design allowing the comparison of the use of local olfactory and visual cues in spatial and discrimination learning. We compared the effect of both types of cues on the discrimination of a single food source in an open-field arena. The goal was either in a fixed or in a variable location, and could be indicated by local olfactory and/or visual cues. The local cues enhanced the discrimination of the goal dish, whether it was in a fixed or in a variable location. However, we did not observe any overshadowing of the spatial information by the local olfactory or visual cue. Rats relied primarily on distant visuospatial information to locate the goal, neglecting local information when it was in conflict with the spatial information.
Resumo:
The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network.
Resumo:
PURPOSE: To evaluate the efficacy of first-line chemotherapy (CT) in preventing external-beam radiotherapy (EBR) and/or enucleation in patients with retinoblastoma (Rbl). PATIENTS AND METHODS: Twenty-four patients with newly diagnosed unilateral or bilateral Rbl received CT associated with local treatment (LT). Two to five courses of etoposide and carboplatin were administered at 3- to 4-week intervals, depending on tumor response, and were completed each time by LT. RESULTS: Tumor response was observed in all eyes. Twenty-one of 24 patients showed a complete response (CR) that persisted at a median follow-up (FU) of 31 months (range, 4 to 41 months). Among the three patients who relapsed, two were lost to FU and one died of progressive disease. CR was achieved by CT and LT alone in 15 (71.4%) of 21 patients with less advanced disease (groups I to III). Six other patients with advanced disease (groups IV and V) experienced treatment failure and needed salvage treatment by EBR and/or enucleation. The difference between the two patient groups with regard to disease stage was statistically significant (P <.0001). EBR could be avoided in 13 (68.4%) of 19 patients, who presented with groups I to III (15 eyes) and group V (one eye) disease, whereas enucleation could be avoided in only two (40%) of five. CONCLUSION: CT combined with intensive LT is effective in patients with groups I to III Rbl, permitting the avoidance of EBR in the majority of these young children and, thus, reducing the risk of long-term sequelae. This is in contrast with the disappointing results for patients with groups IV and V Rbl, in whom EBR and/or enucleation was needed.
Resumo:
Objectifs: Une phase hyperalgique dans les 4 heures post-examen arthrographique est maintenant reconnue dans la littérature. Comment s'en amender ? Nous comparonsl'absence d'anesthésique à l'adjonction de deux différents anesthésiques locaux intra-articulaires(rapidocaïne/bupivacaïne) lors d'arthro-TDM/IRM. Matériels et méthodes: Après approbation du comité d'éthique, étude prospective chez 150 patients répartis aléatoirement en trois groupes : 1) sans anesthésique intra-articulaire, 2)rapidocaïne 1%, 3) bupivacaïne 0,25%. Recueil du score EVA (0-10) aux 5 temps suivants : avant injection (score de base), puis 20 minutes, 4 heures, 24 heureset 7 jours après la procédure. Résultats: Le pic douloureux maximal se trouve à 4h après la procédure (idem littérature). La douleur augmente en moyenne de 1,60 unités 4h après la procédure pour legroupe 1, de 1,22 unités pour le groupe 2 et de 0,29 unités pour le groupe 3. La différence entre les groupes 1 et 3 est statistiquement significative (p=0,002 -Tests ANOVA et de Sidak). Elle n'est pas significative entre les groupes 1 et 2 (p=0,536). La comparaison rapidocaïne et bupivacaïne est moins concluante(p=0,065). Conclusion: L'adjonction de bupivacaïne intra-articulaire devrait être réalisée lors d'examens arthrographiques, surtout afin d'améliorer le confort du patient mais aussi pourfavoriser son immobilité lors de l'acquisition des images TDM ou IRM .
Local adaptation and matching habitat choice in female barn owls with respect to melanic coloration.
Resumo:
Local adaptation is a major mechanism underlying the maintenance of phenotypic variation in spatially heterogeneous environments. In the barn owl (Tyto alba), dark and pale reddish-pheomelanic individuals are adapted to conditions prevailing in northern and southern Europe, respectively. Using a long-term dataset from Central Europe, we report results consistent with the hypothesis that the different pheomelanic phenotypes are adapted to specific local conditions in females, but not in males. Compared to whitish females, reddish females bred in sites surrounded by more arable fields and less forests. Colour-dependent habitat choice was apparently beneficial. First, whitish females produced more fledglings when breeding in wooded areas, whereas reddish females when breeding in sites with more arable fields. Second, cross-fostering experiments showed that female nestlings grew wings more rapidly when both their foster and biological mothers were of similar colour. The latter result suggests that mothers should particularly produce daughters in environments that best match their own coloration. Accordingly, whiter females produced fewer daughters in territories with more arable fields. In conclusion, females displaying alternative melanic phenotypes bred in habitats providing them with the highest fitness benefits. Although small in magnitude, matching habitat selection and local adaptation may help maintain variation in pheomelanin coloration in the barn owl.
Resumo:
The use of Geographic Information Systems has revolutionalized the handling and the visualization of geo-referenced data and has underlined the critic role of spatial analysis. The usual tools for such a purpose are geostatistics which are widely used in Earth science. Geostatistics are based upon several hypothesis which are not always verified in practice. On the other hand, Artificial Neural Network (ANN) a priori can be used without special assumptions and are known to be flexible. This paper proposes to discuss the application of ANN in the case of the interpolation of a geo-referenced variable.