11 resultados para Reflectance spectra
em Université de Lausanne, Switzerland
Resumo:
Colouration may either reflect a discrete polymorphism potentially related to life-history strategies, a continuous signal related to individual quality or a combination of both. Recently, Vercken et al. [J. Evol. Biol. (2007) 221] proposed three discrete ventral colour morphs in female common lizards, Lacerta vivipara, and suggested that they reflect alternative reproductive strategies. Here, we provide a quantitative assessment of the phenotypic distribution and determinants of the proposed colour polymorphism. Based on reflectance spectra, we found no evidence for three distinct visual colour classes, but observed continuous variation in colour from pale yellow to orange. Based on a 2-year experiment, we also provide evidence for reversible colour plasticity in response to a manipulation of the adult population sex ratio; yet, a significant portion of the colour variation was invariant throughout an adult female's life. Our results are thus in agreement with continuous colour variation in adults determined by environmental factors and potentially also by genetic factors.
Resumo:
The recent developments in high magnetic field 13C magnetic resonance spectroscopy with improved localization and shimming techniques have led to important gains in sensitivity and spectral resolution of 13C in vivo spectra in the rodent brain, enabling the separation of several 13C isotopomers of glutamate and glutamine. In this context, the assumptions used in spectral quantification might have a significant impact on the determination of the 13C concentrations and the related metabolic fluxes. In this study, the time domain spectral quantification algorithm AMARES (advanced method for accurate, robust and efficient spectral fitting) was applied to 13 C magnetic resonance spectroscopy spectra acquired in the rat brain at 9.4 T, following infusion of [1,6-(13)C2 ] glucose. Using both Monte Carlo simulations and in vivo data, the goal of this work was: (1) to validate the quantification of in vivo 13C isotopomers using AMARES; (2) to assess the impact of the prior knowledge on the quantification of in vivo 13C isotopomers using AMARES; (3) to compare AMARES and LCModel (linear combination of model spectra) for the quantification of in vivo 13C spectra. AMARES led to accurate and reliable 13C spectral quantification similar to those obtained using LCModel, when the frequency shifts, J-coupling constants and phase patterns of the different 13C isotopomers were included as prior knowledge in the analysis.
Resumo:
OBJECTIVE: To test the accuracy of a new pulse oximeter sensor based on transmittance and reflectance. This sensor makes transillumination of tissue unnecessary and allows measurements on the hand, forearm, foot, and lower limb. DESIGN: Prospective, open, nonrandomized criterion standard study. SETTING: Neonatal intensive care unit, tertiary care center. PATIENTS: Sequential sample of 54 critically ill neonates (gestational age 27 to 42 wks; postnatal age 1 to 28 days) with arterial catheters in place. MEASUREMENTS AND MAIN RESULTS: A total of 99 comparisons between pulse oximetry and arterial saturation were obtained. Comparison of femoral or umbilical arterial blood with transcutaneous measurements on the lower limb (n = 66) demonstrated an excellent correlation (r2 = .96). The mean difference was +1.44% +/- 3.51 (SD) % (range -11% to +8%). Comparison of the transcutaneous values with the radial artery saturation from the corresponding upper limb (n = 33) revealed a correlation coefficient of 0.94 with a mean error of +0.66% +/- 3.34% (range -6% to +7%). The mean difference between noninvasive and invasive measurements was least with the test sensor on the hand, intermediate on the calf and arm, and greatest on the foot. The mean error and its standard deviation were slightly larger for arterial saturation values < 90% than for values > or = 90%. CONCLUSION: Accurate pulse oximetry saturation can be acquired from the hand, forearm, foot, and calf of critically ill newborns using this new sensor.
Resumo:
The aim of this work is to evaluate the capabilities and limitations of chemometric methods and other mathematical treatments applied on spectroscopic data and more specifically on paint samples. The uniqueness of the spectroscopic data comes from the fact that they are multivariate - a few thousands variables - and highly correlated. Statistical methods are used to study and discriminate samples. A collection of 34 red paint samples was measured by Infrared and Raman spectroscopy. Data pretreatment and variable selection demonstrated that the use of Standard Normal Variate (SNV), together with removal of the noisy variables by a selection of the wavelengths from 650 to 1830 cm−1 and 2730-3600 cm−1, provided the optimal results for infrared analysis. Principal component analysis (PCA) and hierarchical clusters analysis (HCA) were then used as exploratory techniques to provide evidence of structure in the data, cluster, or detect outliers. With the FTIR spectra, the Principal Components (PCs) correspond to binder types and the presence/absence of calcium carbonate. 83% of the total variance is explained by the four first PCs. As for the Raman spectra, we observe six different clusters corresponding to the different pigment compositions when plotting the first two PCs, which account for 37% and 20% respectively of the total variance. In conclusion, the use of chemometrics for the forensic analysis of paints provides a valuable tool for objective decision-making, a reduction of the possible classification errors, and a better efficiency, having robust results with time saving data treatments.
Resumo:
Question: Is ultraviolet (UV) reflectance of melanin-based plumage ornaments heritable? Data studied: We considered the barn owl (Two alba), a species that varies continuously from white to reddish-brown, a pheomelanin-based trait. Methods: To perform a partial cross-fostering experiment. we exchanged one to three hatchlings between 16 pairs of nests with a similar hatching date. This experiment allocated hatchlings randomly among rearing environments. Forty-nine days later, we collected three feathers per individual to measure UV reflectance. Conclusions: The cross-fostering experiment showed that. independently of human-visible coloration, variation in UV reflectance is significantly sensitive to origin-related factors.
Resumo:
Reliable quantification of the macromolecule signals in short echo-time H-1 MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. H-1 spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.
Resumo:
High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.
Resumo:
Previous research has provided inconsistent results regarding the spatial modulation of auditory-somatosensory interactions. The present study reports three experiments designed to investigate the nature of these interactions in the space close to the head. Human participants made speeded detection responses to unimodal auditory, somatosensory, or simultaneous auditory-somatosensory stimuli. In Experiment 1, electrocutaneous stimuli were presented to either earlobe, while auditory stimuli were presented from the same versus opposite sides, and from one of two distances (20 vs. 70cm) from the participant's head. The results demonstrated a spatial modulation of auditory-somatosensory interactions when auditory stimuli were presented from close to the head. In Experiment 2, electrocutaneous stimuli were delivered to the hands, which were placed either close to or far from the head, while the auditory stimuli were again presented at one of two distances. The results revealed that the spatial modulation observed in Experiment 1 was specific to the particular body part stimulated (head) rather than to the region of space (i.e. around the head) where the stimuli were presented. The results of Experiment 3 demonstrate that sounds that contain high-frequency components are particularly effective in eliciting this auditory-somatosensory spatial effect. Taken together, these findings help to resolve inconsistencies in the previous literature and suggest that auditory-somatosensory multisensory integration is modulated by the stimulated body surface and acoustic spectra of the stimuli presented.