5 resultados para Reator tubular
em Université de Lausanne, Switzerland
Resumo:
The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.
Resumo:
The tubular transport of [3H]methotrexate was studied in isolated nonperfused and perfused superficial proximal tubular segments of rabbit kidneys. Reabsorption represented only 5% of perfused methotrexate, and appeared to be mostly of passive nature inasmuch as it was not modified by reducing the temperature or by ouabain. Cellular accumulation in nonperfused segments and secretion in perfused tubules were highest in the S2 segment and lower in the S3 and S1 segments. Secretion against a bath-to-lumen concentration gradient was observed only in S2 segments (with a maximum methotrexate secretory rate of 478 +/- 48 fmol/mm.min and an apparent Km of transport of 363 +/- 32 microM), and was inhibited by probenecid and folate. The low capacity for methotrexate secretion may be explained by a low capacity of transport across the basolateral membrane of the proximal cell as methotrexate was accumulated only to a low extent in nonperfused tubules (tissue water to medium concentration ratio of 8.2 +/- 1 in S2 segments). During secretion a small amount of methotrexate was metabolized; the nature of the metabolite(s) remains to be defined.
Resumo:
BACKGROUND: Lower body negative pressure (LBNP) has been shown to induce a progressive activation of neurohormonal systems, and a renal tubular and hemodynamic response that mimics the renal adaptation observed in congestive heart failure (CHF). As beta-blockers play an important role in the management of CHF patients, the effects of metoprolol on the renal response were examined in healthy subjects during sustained LBNP. METHODS: Twenty healthy male subjects were randomized in this double blind, placebo versus metoprolol 200 mg once daily, study. After 10 days of treatment, each subject was exposed to 3 levels of LBNP (0, -10, and -20 mbar) for 1 hour, each level of LBNP being separated by 2 days. Neurohormonal profiles, systemic and renal hemodynamics, as well as renal sodium handling were measured before, during, and after LBNP. RESULTS: Blood pressure and heart rate were significantly lower in the metoprolol group throughout the study (P < 0.01). GFR and RPF were similar in both groups at baseline, and no change in renal hemodynamic values was detected at any level of LBNP. However, a reduction in sodium excretion was observed in the placebo group at -20 mbar, whereas no change was detected in the metoprolol group. An increase in plasma renin activity was also observed at -20 mbar in the placebo group that was not observed with metoprolol. CONCLUSION: The beta-blocker metoprolol prevents the sodium retention induced by lower body negative pressure in healthy subjects despite a lower blood pressure. The prevention of sodium retention may be due to a blunting of the neurohormonal response. These effects of metoprolol on the renal response to LBNP may in part explain the beneficial effects of this agent in heart failure patients.
Resumo:
In the colon, the urokinase-type plasminogen activator (uPA), its receptor (uPAR), and plasminogen activator inhibitors, PAI-1 and PAI-2, are implicated in the transition from mucosa to adenoma and tumour progression. However, expression in the mucosa adjacent, or distant, to an adenoma has not yet been investigated. Three biopsies from mucosae adjacent (20 cm, ipsilateral) and distant (contralateral) to an isolated tubular adenoma were analysed in 14 patients and 8 controls. Laser microdissection isolated stromal and epithelial crypt components, and quantitative RT-PCR analyses of uPA, uPAR, PAI-1 and PAI-2 mRNA levels were performed. Among controls, no significant differences in the markers were noted. With left colon isolated tubular adenoma, uPA, uPAR, and PAI-2 mRNA levels were significantly increased in the adjacent mucosal stroma compared to epithelial crypt levels (p < 0.05). In right colon adenoma, the mRNA levels of these 3 molecular markers were significantly increased only in the adjacent mucosal stromal samples (p < 0.05). Isolated tubular adenoma in the colon increases significantly the mRNA levels of 3 proteolysis-associated molecular markers in the stromal, but not in the epithelial, components of adjacent mucosa. These results suggest the presence of regional and dynamic interactions in apparently non-involved mucosae.
Resumo:
Colorectal cancer (CRC) is one of the most intensively studied cancer types, partly because of its high prevalence but also because of the existence of its precursor lesions, tubular or villous adenomas, and more recently (sessile) serrated adenomas, which can be detected endoscopically and removed. The morphological steps in the adenoma-carcinoma sequence have been elucidated at a molecular level, which has been facilitated by identification of the genes responsible for familial intestinal cancer. However, apart from early detection of familial forms of CRC and its use in genetic counseling, until recently such detailed molecular knowledge has had little impact on clinical management of the disease. This has dramatically changed in the last decade. With drugs specifically targeting the epidermal growth factor receptor (EGFR) having been shown effective in CRC, mechanisms responsible for resistance have been explored. The finding that KRAS mutated cancers do not respond to anti-EGFR treatment has had a profound impact on clinical management and on molecular diagnostics of CRC. Additional genetic tests for mutations in NRAS, BRAF and PIK3CA contribute to determining who to treat, and others will follow. New therapies effective in patients with advanced CRC are under investigation. Remaining burning questions for optimal management are which patients will relapse after resection of the primary tumor and which patients will respond to the standard 5FU-oxaliplatin adjuvant treatment regimen. Predictive tests to address these issues are eagerly awaited. New classifications of CRC, based on molecular parameters, are emerging, and we will be confronted with new subtypes of CRC, for which the definition is based on combinations of gene expression patterns, chromosomal alterations, gene mutations and epigenetic characteristics. This will be instrumental in designing new approaches for therapy but will also be translated into molecular diagnostics. Both will contribute to improved clinical management of CRC.