90 resultados para Rashi, 1040-1105

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Résumé de l'ouvrage) Le "Dictionnaire encyclopédique du Moyen Âge" est une synthèse, rédigée dans un langage clair, des connaissances sur toutes les civilisations de l'époque médiévale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wounding in multicellular eukaryotes results in marked changes in gene expression that contribute to tissue defense and repair. Using a cDNA microarray technique, we analyzed the timing, dynamics, and regulation of the expression of 150 genes in mechanically wounded leaves of Arabidopsis. Temporal accumulation of a group of transcripts was correlated with the appearance of oxylipin signals of the jasmonate family. Analysis of the coronatine-insensitive coi1-1 Arabidopsis mutant that is also insensitive to jasmonate allowed us to identify a large number of COI1-dependent and COI1-independent wound-inducible genes. Water stress was found to contribute to the regulation of an unexpectedly large fraction of these genes. Comparing the results of mechanical wounding with damage by feeding larvae of the cabbage butterfly (Pieris rapae) resulted in very different transcript profiles. One gene was specifically induced by insect feeding but not by wounding; moreover, there was a relative lack of water stress-induced gene expression during insect feeding. These results help reveal a feeding strategy of P. rapae that may minimize the activation of a subset of water stress-inducible, defense-related genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted a study of the patterns and dynamics of oxidized fatty acid derivatives (oxylipins) in potato leaves infected with the late-blight pathogen Phytophthora infestans. Two 18-carbon divinyl ether fatty acids, colneleic acid and colnelenic acid, accumulated during disease development. To date, there are no reports that such compounds have been detected in higher plants. The divinyl ether fatty acids accumulate more rapidly in potato cultivar Matilda (a cultivar with increased resistance to late blight) than in cultivar Bintje, a susceptible cultivar. Colnelenic acid reached levels of up to approximately 24 nmol (7 microgram) per g fresh weight of tissue in infected leaves. By contrast, levels of members of the jasmonic acid family did not change significantly during pathogenesis. The divinyl ethers also accumulated during the incompatible interaction of tobacco with tobacco mosaic virus. Colneleic and colnelenic acids were found to be inhibitory to P. infestans, suggesting a function in plant defense for divinyl ethers, which are unstable compounds rarely encountered in biological systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabidopsis mutant pho1 is deficient in the transfer of Pi from root epidermal and cortical cells to the xylem. The PHO1 gene was identified by a map-based cloning strategy. The N-terminal half of PHO1 is mainly hydrophilic, whereas the C-terminal half has six potential membrane-spanning domains. PHO1 shows no homology with any characterized solute transporter, including the family of H(+)-Pi cotransporters identified in plants and fungi. PHO1 shows highest homology with the Rcm1 mammalian receptor for xenotropic murine leukemia retroviruses and with the Saccharomyces cerevisiae Syg1 protein involved in the mating pheromone signal transduction pathway. PHO1 is expressed predominantly in the roots and is upregulated weakly under Pi stress. Studies with PHO1 promoter-beta-glucuronidase constructs reveal predominant expression of the PHO1 promoter in the stelar cells of the root and the lower part of the hypocotyl. There also is beta-glucuronidase staining of endodermal cells that are adjacent to the protoxylem vessels. The Arabidopsis genome contains 10 additional genes showing homology with PHO1. Thus, PHO1 defines a novel class of proteins involved in ion transport in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane. Electrophysiological experiments revealed the presence of a Ca(2+)-permeable channel in the plasma membrane that is transiently activated by mild temperature increments or chemical perturbations of membrane fluidity. The amplitude of the Ca(2+) influx during the first minutes of a temperature stress modulated the intensity of the HSR, and Ca(2+) channel blockers prevented HSR and the onset of thermotolerance. Our data suggest that early sensing of mild temperature increments occurs at the plasma membrane of plant cells independently from cytosolic protein unfolding. The heat signal is translated into an effective HSR by way of a specific membrane-regulated Ca(2+) influx, leading to thermotolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligogalacturonides are structural and regulatory homopolymers from the extracellular pectic matrix of plants. In vitro micromolar concentrations of oligogalacturonates and polygalacturonates were shown previously to stimulate the phosphorylation of a small plasma membrane-associated protein in potato. Immunologically cross-reactive proteins were detected in plasma membrane-enriched fractions from all angiosperm subclasses in the Cronquist system. Polygalacturonate-enhanced phosphorylation of the protein was observed in four of the six dicotyledon subclasses but not in any of the five monocotyledon subclasses. A cDNA for the protein was cloned from potato. The deduced protein is extremely hydrophilic and has a proline-rich N terminus. The C-terminal half of the protein was predicted to be a coiled coil, suggesting that the protein interacts with other macromolecules. The recombinant protein was found to bind both simple and complex galacturonides. The behavior of the protein suggests several parallels with viral proteins involved in intercellular communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge about signaling in arbuscular mycorrhizal (AM) symbioses is currently restricted to the common symbiosis (SYM) signaling pathway discovered in legumes. This pathway includes calcium as a second messenger and regulates both AM and rhizobial symbioses. Both monocotyledons and dicotyledons form symbiotic associations with AM fungi, and although they differ markedly in the organization of their root systems, the morphology of colonization is similar. To identify and dissect AM-specific signaling in rice (Oryza sativa), we developed molecular phenotyping tools based on gene expression patterns that monitor various steps of AM colonization. These tools were used to distinguish common SYM-dependent and -independent signaling by examining rice mutants of selected putative legume signaling orthologs predicted to be perturbed both upstream (CASTOR and POLLUX) and downstream (CCAMK and CYCLOPS) of the central, calcium-spiking signal. All four mutants displayed impaired AM interactions and altered AM-specific gene expression patterns, therefore demonstrating functional conservation of SYM signaling between distant plant species. In addition, differential gene expression patterns in the mutants provided evidence for AM-specific but SYM-independent signaling in rice and furthermore for unexpected deviations from the SYM pathway downstream of calcium spiking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnaporthe oryzae causes rice blast, the most serious foliar fungal disease of cultivated rice (Oryza sativa). During hemibiotrophic leaf infection, the pathogen simultaneously combines biotrophic and necrotrophic growth. Here, we provide cytological and molecular evidence that, in contrast to leaf tissue infection, the fungus adopts a uniquely biotrophic infection strategy in roots for a prolonged period and spreads without causing a loss of host cell viability. Consistent with a biotrophic lifestyle, intracellularly growing hyphae of M. oryzae are surrounded by a plant-derived membrane. Global, temporal gene expression analysis used to monitor rice responses to progressive root infection revealed a rapid but transient induction of basal defense-related gene transcripts, indicating perception of the pathogen by the rice root. Early defense gene induction was followed by suppression at the onset of intracellular fungal growth, consistent with the biotrophic nature of root invasion. By contrast, during foliar infection, the vast majority of these transcripts continued to accumulate or increased in abundance. Furthermore, induction of necrotrophy-associated genes during early tissue penetration, previously observed in infected leaves, was not seen in roots. Collectively, our results not only report a global characterization of transcriptional root responses to a biotrophic fungal pathogen but also provide initial evidence for tissue-adapted fungal infection strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcript patterns elicited in response to attack reveal, at the molecular level, how plants respond to aggressors. These patterns are fashioned both by inflicted physical damage as well as by biological components displayed or released by the attacker. Different types of attacking organisms might therefore be expected to elicit different transcription programs in the host. Using a large-scale DNA microarray, we characterized gene expression in damaged as well as in distal Arabidopsis thaliana leaves in response to the specialist insect, Pieris rapae. More than 100 insect-responsive genes potentially involved in defense were identified, including genes involved in pathogenesis, indole glucosinolate metabolism, detoxification and cell survival, and signal transduction. Of these 114 genes, 111 were induced in Pieris feeding, and only three were repressed. Expression patterns in distal leaves were markedly similar to those of local leaves. Analysis of wild-type and jasmonate mutant plants, coupled with jasmonate treatment, showed that between 67 and 84% of Pieris-regulated gene expression was controlled, totally or in part, by the jasmonate pathway. This was correlated with increased larval performance on the coronatine insensitive1 glabrous1 (coi1-1 gl1) mutant. Independent mutations in COI1 and GL1 led to a faster larval weight gain, but the gl1 mutation had relatively little effect on the expression of the insect-responsive genes examined. Finally, we compared transcript patterns in Arabidopis in response to larvae of the specialist P. rapae and to a generalist insect, Spodoptera littoralis. Surprisingly, given the complex nature of insect salivary components and reported differences between species, almost identical transcript profiles were observed. This study also provides a robustly characterized gene set for the further investigation of plant-insect interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wounding plant tissues initiates large-scale changes in transcription coupled to growth arrest, allowing resource diversion for defense. These processes are mediated in large part by the potent lipid regulator jasmonic acid (JA). Genes selected from a list of wound-inducible transcripts regulated by the jasmonate pathway were overexpressed in Arabidopsis thaliana, and the transgenic plants were then assayed for sensitivity to methyl jasmonate (MeJA). When grown in the presence of MeJA, the roots of plants overexpressing a gene of unknown function were longer than those of wild-type plants. When transcript levels for this gene, which we named JASMONATE-ASSOCIATED1 (JAS1), were reduced by RNA interference, the plants showed increased sensitivity to MeJA and growth was inhibited. These gain- and loss-of-function assays suggest that this gene acts as a repressor of JA-inhibited growth. An alternative transcript from the gene encoding a second protein isoform with a longer C terminus failed to repress jasmonate sensitivity. This identified a conserved C-terminal sequence in JAS1 and related genes, all of which also contain Zim motifs and many of which are jasmonate-regulated. Both forms of JAS1 were found to localize to the nucleus in transient expression assays. Physiological tests of growth responses after wounding were consistent with the fact that JAS1 is a repressor of JA-regulated growth retardation.