5 resultados para Rain forests - Management
em Université de Lausanne, Switzerland
Resumo:
Summary Forests are key ecosystems of the earth and associated with a large range of functions. Many of these functions are beneficial to humans and are referred to as ecosystem services. Sustainable development requires that all relevant ecosystem services are quantified, managed and monitored equally. Natural resource management therefore targets the services associated with ecosystems. The main hypothesis of this thesis is that the spatial and temporal domains of relevant services do not correspond to a discrete forest ecosystem. As a consequence, the services are not quantified, managed and monitored in an equal and sustainable manner. The thesis aims were therefore to test this hypothesis, establish an improved conceptual approach and provide spatial applications for the relevant land cover and structure variables. The study was carried out in western Switzerland and based primarily on data from a countrywide landscape inventory. This inventory is part of the third Swiss national forest inventory and assesses continuous landscape variables based on a regular sampling of true colour aerial imagery. In addition, land cover variables were derived from Landsat 5 TM passive sensor data and land structure variables from active sensor data from a small footprint laserscanning system. The results confirmed the main hypothesis, as relevant services did not scale well with the forest ecosystem. Instead, a new conceptual approach for sustainable management of natural resources was described. This concept quantifies the services as a continuous function of the landscape, rather than a discrete function of the forest ecosystem. The explanatory landscape variables are therefore called continuous fields and the forest becomes a dependent and function-driven management unit. Continuous field mapping methods were established for land cover and structure variables. In conclusion, the discrete forest ecosystem is an adequate planning and management unit. However, monitoring the state of and trends in sustainability of services requires them to be quantified as a continuous function of the landscape. Sustainable natural resource management iteratively combines the ecosystem and gradient approaches. Résumé Les forêts sont des écosystèmes-clés de la terre et on leur attribue un grand nombre de fonctions. Beaucoup de ces fonctions sont bénéfiques pour l'homme et sont nommées services écosystémiques. Le développement durable exige que ces services écosystémiques soient tous quantifiés, gérés et surveillés de façon égale. La gestion des ressources naturelles a donc pour cible les services attribués aux écosystèmes. L'hypothèse principale de cette thèse est que les domaines spatiaux et temporels des services attribués à la forêt ne correspondent pas à un écosystème discret. Par conséquent, les services ne sont pas quantifiés, aménagés et surveillés d'une manière équivalente et durable. Les buts de la thèse étaient de tester cette hypothèse, d'établir une nouvelle approche conceptuelle de la gestion des ressources naturelles et de préparer des applications spatiales pour les variables paysagères et structurelles appropriées. L'étude a été menée en Suisse occidentale principalement sur la base d'un inventaire de paysage à l'échelon national. Cet inventaire fait partie du troisième inventaire forestier national suisse et mesure de façon continue des variables paysagères sur la base d'un échantillonnage régulier sur des photos aériennes couleur. En outre, des variables de couverture ? terrestre ont été dérivées des données d'un senseur passif Landsat 5 TM, ainsi que des variables structurelles, dérivées du laserscanning, un senseur actif. Les résultats confirment l'hypothèse principale, car l'échelle des services ne correspond pas à celle de l'écosystème forestier. Au lieu de cela, une nouvelle approche a été élaborée pour la gestion durable des ressources naturelles. Ce concept représente les services comme une fonction continue du paysage, plutôt qu'une fonction discrète de l'écosystème forestier. En conséquence, les variables explicatives de paysage sont dénommées continuous fields et la forêt devient une entité dépendante, définie par la fonction principale du paysage. Des méthodes correspondantes pour la couverture terrestre et la structure ont été élaborées. En conclusion, l'écosystème forestier discret est une unité adéquate pour la planification et la gestion. En revanche, la surveillance de la durabilité de l'état et de son évolution exige que les services soient quantifiés comme fonction continue du paysage. La gestion durable des ressources naturelles joint donc l'approche écosystémique avec celle du gradient de manière itérative.
Resumo:
Habitat loss and fragmentation due to land use changes are major threats to biodiversity in forest ecosystems, and they are expected to have important impacts on many taxa and at various spatial scales. Species richness and area relationships (SARs) have been used to assess species diversity patterns and drivers, and thereby in the establishment of conservation and management strategies. Here we propose a hierarchical approach to achieve deeper insights on SARs in small forest islets in intensive farmland and to address the impacts of decreasing naturalness on such relationships. In the intensive dairy landscapes of Northwest Portugal, where small forest stands (dominated by pines, eucalypts or both) represent semi-natural habitat islands, 50 small forest stands were selected and surveyed for vascular plant diversity. A hierarchical analytical framework was devised to determine species richness and inter- and intra-patch SARs for the whole set of forest patches (general patterns) and for each type of forest (specific patterns). Differences in SARs for distinct groups were also tested by considering subsets of species (native, alien, woody, and herbaceous). Overall, values for species richness were confirmed to be different between forest patches exhibiting different levels of naturalness. Whereas higher values of plant diversity were found in pine stands, higher values for alien species were observed in eucalypt stands. Total area of forest (inter-patch SAR) was found not to have a significant impact on species richness for any of the targeted groups of species. However, significant intra-patch SARs were obtained for all groups of species and forest types. A hierarchical approach was successfully applied to scrutinise SARs along a gradient of forest naturalness in intensively managed landscapes. Dominant canopy tree and management intensity were found to reflect differently on distinct species groups as well as to compensate for increasing stand area, buffering SARs among patches, but not within patches. Thus, the maintenance of small semi-natural patches dominated by pines, under extensive practices of forest management, will promote native plant diversity while at the same time contributing to limit the expansion of problematic alien invasive species.
Resumo:
1. As trees in a given cohort progress through ontogeny, many individuals die. This risk of mortality is unevenly distributed across species because of many processes such as habitat filtering, interspecific competition and negative density dependence. Here, we predict and test the patterns that such ecological processes should inscribe on both species and phylogenetic diversity as plants recruit from saplings to the canopy. 2. We compared species and phylogenetic diversity of sapling and tree communities at two sites in French Guiana. We surveyed 2084 adult trees in four 1-ha tree plots and 943 saplings in sixteen 16-m2 subplots nested within the tree plots. Species diversity was measured using Fisher's alpha (species richness) and Simpson's index (species evenness). Phylogenetic diversity was measured using Faith's phylogenetic diversity (phylogenetic richness) and Rao's quadratic entropy index (phylogenetic evenness). The phylogenetic diversity indices were inferred using four phylogenetic hypotheses: two based on rbcLa plastid DNA sequences obtained from the inventoried individuals with different branch lengths, a global phylogeny available from the Angiosperm Phylogeny Group, and a combination of both. 3. Taxonomic identification of the saplings was performed by combining morphological and DNA barcoding techniques using three plant DNA barcodes (psbA-trnH, rpoC1 and rbcLa). DNA barcoding enabled us to increase species assignment and to assign unidentified saplings to molecular operational taxonomic units. 4. Species richness was similar between saplings and trees, but in about half of our comparisons, species evenness was higher in trees than in saplings. This suggests that negative density dependence plays an important role during the sapling-to-tree transition. 5. Phylogenetic richness increased between saplings and trees in about half of the comparisons. Phylogenetic evenness increased significantly between saplings and trees in a few cases (4 out of 16) and only with the most resolved phylogeny. These results suggest that negative density dependence operates largely independently of the phylogenetic structure of communities. 6. Synthesis. By contrasting species richness and evenness across size classes, we suggest that negative density dependence drives shifts in composition during the sapling-to-tree transition. In addition, we found little evidence for a change in phylogenetic diversity across age classes, suggesting that the observed patterns are not phylogenetically constrained.
Resumo:
Forest management for groundwater protection is a cheap solution for a vital question, which is implemented for decades all over the world. The main challenge is to insure a constant adequate forest management to preserve the service provided. In Lombok Island, the problem is the lack of implementation of the public regulation in the forest area. Therefore payments for environmental services (PES) are used as an alternative in this weak institutional environment. The results of the field research show that, surprisingly, the "famous" Lombok PES case is not a PES at all, even if there are some payments. This research has however happy ends because other "forest for water" PES have been identified in the field. In addition, the legal review identified a way to solve the lack of legal base for PES implementation. Thus, the PES examples that we identified could be spread all over Indonesia without conflicting other regulations (fiscal, local finance, forest, etc.) and circumventing the forest administrations.
Resumo:
Bark beetle outbreaks have a devastating effect on economically important forests worldwide, thus requiring extensive application of management control strategies. The presence of unmanaged protected areas in close proximity to managed forests can instigate concerns that bark beetle infestations may spread from unmanaged into managed stands. We studied the impact of differential management of forest stands on the dispersal dynamics of the European spruce bark beetle, Ips typographus, making use of inferential population genetics on mitochondrial and nuclear genomes. Bayesian inferences of migration rates and a most parsimonious dispersal tree show that outgoing gene flow was consistently higher from managed to unmanaged areas. Reason for that is likely the thorough removal of potential breeding material in managed forests and thus the dispersal of the base stock beetles from these areas to unmanaged areas where breeding material is available. Our study suggests that the potential threat posed by unmanaged to managed forests in regard to I. typographus infestation needs to be carefully re-considered.