5 resultados para Racional number
em Université de Lausanne, Switzerland
Resumo:
A large fraction of genome variation between individuals is comprised of submicroscopic copy number variation of genomic DNA segments. We assessed the relative contribution of structural changes and gene dosage alterations on phenotypic outcomes with mouse models of Smith-Magenis and Potocki-Lupski syndromes. We phenotyped mice with 1n (Deletion/+), 2n (+/+), 3n (Duplication/+), and balanced 2n compound heterozygous (Deletion/Duplication) copies of the same region. Parallel to the observations made in humans, such variation in gene copy number was sufficient to generate phenotypic consequences: in a number of cases diametrically opposing phenotypes were associated with gain versus loss of gene content. Surprisingly, some neurobehavioral traits were not rescued by restoration of the normal gene copy number. Transcriptome profiling showed that a highly significant propensity of transcriptional changes map to the engineered interval in the five assessed tissues. A statistically significant overrepresentation of the genes mapping to the entire length of the engineered chromosome was also found in the top-ranked differentially expressed genes in the mice containing rearranged chromosomes, regardless of the nature of the rearrangement, an observation robust across different cell lineages of the central nervous system. Our data indicate that a structural change at a given position of the human genome may affect not only locus and adjacent gene expression but also "genome regulation." Furthermore, structural change can cause the same perturbation in particular pathways regardless of gene dosage. Thus, the presence of a genomic structural change, as well as gene dosage imbalance, contributes to the ultimate phenotype.
Resumo:
BACKGROUND: The presence of multiple melanocytic naevi is a strong risk factor for melanoma. Use of the whole body naevus count to identify at-risk patients is impractical. OBJECTIVES: To (i) identify a valid anatomical predictor of total naevus count; (ii) determine the number of naevi that most accurately predict total naevus count above 25, 50 and 100; and (iii) evaluate determinants of multiple melanocytic naevi and atypical naevi. METHODS: Clinical data from 292 consecutive Spanish patients consulting for skin lesions requiring debriding were collected throughout 2009 and 2010. Correlations between site-specific and whole body naevus counts were analysed. Cut-offs to predict total naevus counts were determined using the area under the receiver operating characteristic curve. RESULTS: The studied population was young (median age 31 years, interquartile range 28-43). The naevus count on the right arm correlated best with the total nevus count (R(2) 0·80 for men, 0·86 for women). Presence of at least five naevi on the right arm was the strongest determinant of a total naevus count above 50 [odds ratio (OR) 34·4, 95% confidence interval (CI) 13·9-85·0] and of having at least one atypical naevus (OR 5·7, 95% CI 2·4-13·5). Cut-off values of 6, 8 and 11 naevi on the right arm best predicted total naevus count above 25, 50 and 100, respectively. CONCLUSIONS: Our results support the arm as a practical and reliable site to estimate the total naevus count when screening or phenotyping large populations. Threshold values for the number of naevi on the arm are proposed to help identify patients for melanoma screening.
Resumo:
The dentate gyrus is one of only two regions of the mammalian brain where substantial neurogenesis occurs postnatally. However, detailed quantitative information about the postnatal structural maturation of the primate dentate gyrus is meager. We performed design-based, stereological studies of neuron number and size, and volume of the dentate gyrus layers in rhesus macaque monkeys (Macaca mulatta) of different postnatal ages. We found that about 40% of the total number of granule cells observed in mature 5-10-year-old macaque monkeys are added to the granule cell layer postnatally; 25% of these neurons are added within the first three postnatal months. Accordingly, cell proliferation and neurogenesis within the dentate gyrus peak within the first 3 months after birth and remain at an intermediate level between 3 months and at least 1 year of age. Although granule cell bodies undergo their largest increase in size during the first year of life, cell size and the volume of the three layers of the dentate gyrus (i.e. the molecular, granule cell and polymorphic layers) continue to increase beyond 1 year of age. Moreover, the different layers of the dentate gyrus exhibit distinct volumetric changes during postnatal development. Finally, we observe significant levels of cell proliferation, neurogenesis and cell death in the context of an overall stable number of granule cells in mature 5-10-year-old monkeys. These data identify an extended developmental period during which neurogenesis might be modulated to significantly impact the structure and function of the dentate gyrus in adulthood.
Resumo:
Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn skeptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgments of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals' explicit traditional (religious) and non-traditional (e.g., paranormal) beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g., repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group) or a psychic (psychic group). The instruction influenced participants' explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people's interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events.