182 resultados para Pulse width modulated voltage source inverters

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although active personal dosemeters (APDs) are not used quite often in hospital environments, the possibility to assess the dose and/or dose rate in real time is particularly interesting in interventional radiology and cardiology (IR/IC) since operators can receive relatively high doses while standing close to the primary radiation field.A study concerning the optimization of the use of APDs in IR/IC was performed in the framework of the ORAMED project, a Collaborative Project (2008-2011) supported by the European Commission within its 7th Framework Program. This paper reports on tests performed with APDs on phantoms using an X-ray facility in a hospital environment and APDs worn by interventionalists during routine practice in different European hospitals.The behaviour of the APDs is more satisfactory in hospitals than in laboratories with respect to the influence of the tube peak high voltage and pulse width, because the APDs are tested in scattered fields with dose equivalent rates generally lower than 1 Sv.h(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Direct colonic electrical stimulation may prove to be a treatment option for specific motility disorders such as chronic constipation. The aim of this study was to provoke colonic contractions using electrical stimulation delivered from a battery-operated device. METHODS: Electrodes were inserted into the caecal seromuscular layer of eight anaesthetized pigs. Contractions were induced by a neurostimulator (Medtronic 3625). Caecal motility was measured simultaneously by video image analysis, manometry and a technique assessing colonic transit. RESULTS: Caecal contractions were generated using 8-10 V amplitude, 1000 micros pulse width, 120 Hz frequency for 10-30 s, with an intensity of 7-15 mA. The maximal contraction strength was observed after 20-25 s. Electrical stimulation was followed by a relaxation phase of 1.5-2 min during which contractions propagated orally and aborally over at least 10 cm. Spontaneous and stimulated caecal motility values were significantly different for both intraluminal pressure (mean(s.d.) 332(124) and 463(187) mmHg respectively; P < 0.001, 42 experiments) and movement of contents (1.6(0.9) and 3.9(2.8) mm; P < 0.001, 40 experiments). CONCLUSION: Electrical stimulation modulated caecal motility, and provoked localized and propagated colonic contractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct electrical stimulation of the colon offers a promising approach for the induction of propulsive colonic contractions by using an implantable device. The objective of this study was to assess the feasibility to induce colonic contractions using a commercially available battery-operated stimulator (maximum pulse width of 1 ms and maximum amplitude of 10 V). Three pairs of pacing electrodes were inserted into the cecal seromuscular layer of anesthetized pigs. During a first set of in vivo experiments conducted on six animals, a pacing protocol leading to cecum contractions was determined: stimulation bursts with 1 ms pulse width, 10 V amplitude (7-15 mA), 120 Hz frequency, and 30-s burst duration, repeated every 2-5 min. In a second testing phase, an evaluation of the pacing protocol was performed in four animals (120 stimulation bursts in total). By using the battery-operated stimulator, contractions of the cecum and movement of contents could be induced in 92% of all stimulations. A cecal shortening of about 30% and an average intraluminal pressure increase of 10.0 +/- 6.0 mmHg were observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current study investigates a new model of barrel cortex activation using stimulation of the infraorbital branch of the trigeminal nerve. A robust and reproducible activation of the rat barrel cortex was obtained following trigeminal nerve stimulation. Blood oxygen level-dependent (BOLD) effects were obtained in the primary somatosensory barrel cortex (S1BF), the secondary somatosensory cortex (S2) and the motor cortex. These cortical areas were reached from afferent pathways from the trigeminal ganglion, the trigeminal nuclei and thalamic nuclei from which neurons project their axons upon whisker stimulation. The maximum BOLD responses were obtained for a stimulus frequency of 1 Hz, a stimulus pulse width of 100 μs and for current intensities between 1.5 and 3 mA. The BOLD response was nonlinear as a function of frequency and current intensity. Additionally, modeling BOLD responses in the rat barrel cortex from separate cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) measurements showed good agreement with the shape and amplitude of measured BOLD responses as a function of stimulus frequency and will potentially allow to identify the sources of BOLD nonlinearities. Activation of the rat barrel cortex using trigeminal nerve stimulation will contribute to the interpretation of the BOLD signals from functional magnetic resonance imaging studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: We tested the hypothesis that twitch potentiation would be greater following conventional (CONV) neuromuscular electrical stimulation (50-µs pulse width and 25-Hz frequency) compared with wide-pulse high-frequency (WPHF) neuromuscular electrical stimulation (1-ms, 100-Hz) and voluntary (VOL) contractions, because of specificities in motor unit recruitment (random in CONV vs. random and orderly in WPHF vs. orderly in VOL). METHODS: A single twitch was evoked by means of tibial nerve stimulation before and 2 s after CONV, WPHF, and VOL conditioning contractions of the plantar flexors (intensity: 10% maximal voluntary contraction; duration: 10 s) in 13 young healthy subjects. RESULTS: Peak twitch increased (P<0.05) after CONV (+4.5±4.0%) and WPHF (+3.3±5.9%), with no difference between the 2 modalities, whereas no changes were observed after VOL (+0.8±2.6%). CONCLUSIONS: Our results demonstrate that presumed differences in motor unit recruitment between WPHF and CONV do not seem to influence twitch potentiation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Electrical stimulation is a new way to treat digestive disorders such as constipation. Colonic propulsive activity can be triggered by battery operated devices. This study aimed to demonstrate the effect of direct electrical colonic stimulation on mean transit time in a chronic porcine model. The impact of stimulation and implanted material on the colonic wall was also assessed. Three pairs of electrodes were implanted into the caecal wall of 12 anaesthetized pigs. Reference colonic transit time was determined by radiopaque markers for each pig before implantation. It was repeated 4 weeks after implantation with sham stimulation and 5 weeks after implantation with electrical stimulation. Aboral sequential trains of 1-ms pulse width (10 V; 120 Hz) were applied twice daily for 6 days, using an external battery operated stimulator. For each course of markers, a mean value was computed from transit times obtained from individual pig. Microscopic examination of the caecum was routinely performed after animal sacrifice. A reduction of mean transit time was observed after electrical stimulation (19 +/- 13 h; mean +/- SD) when compared to reference (34 +/- 7 h; P = 0.045) and mean transit time after sham stimulation (36 +/- 9 h; P = 0.035). Histological examination revealed minimal chronic inflammation around the electrodes. Colonic transit time measured in a chronic porcine model is reduced by direct sequential electrical stimulation. Minimal tissue lesion is elicited by stimulation or implanted material. Electrical colonic stimulation could be a promising approach to treat specific disorders of the large bowel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Pulse wave velocity (PWV), an index of arterial wall stiffness, is modulated by blood pressure (BP). Whether heart rate (HR) is also a modulator of PWV is controversial. Recent research involving mainly patients with high aortic PWV have found either no change or a positive correlation between the two. Given that PWV is increasingly being measured in cardiovascular studies, the relationship between HR and PWV should be known in patients with preserved arterial wall elasticity. OBJECTIVE: The aim of this study was to evaluate the importance of HR as a determinant of the variability in PWV in patients with a low degree of atherosclerosis. DESIGN AND METHODS: Fourteen patients (five female, nine male; aged 68 +/- 8 years) were evaluated post pacemaker implantation due to sick sinus or carotid hypersensitivity syndromes. Carotid-femoral PWV was measured at rest and during atrial pacing at 80, 90 and 100 bpm (paced HR). Arterial femoral blood flow (AFBF) was measured by echodoppler. RESULTS: PWV increased from 6.2 +/- 1.5 m/s (mean +/- SD) during resting sinus rhythm (HR 62 +/- 8 bpm; mean +/- SD) to 6.8 +/- 1.0, 7.0 +/- 0.9, and 7.6 +/- 1.1 m/s at pacing rates of 80, 90 and 100 bpm, respectively (P < 0.0001). Systolic (SBP) and mean blood pressure (MBP) remained constant at all HR levels, whereas AFBF increased in a linear fashion. CONCLUSIONS: These results demonstrate that even in patients with a low degree of atherosclerosis, HR is a potential modulator of carotid-femoral PWV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Mutism and dense retrograde amnesia are found both in organic and dissociative contexts. Moreover, dissociative symptoms may be modulated by right prefrontal activity. A single case, M.R., developed left hemiparesis, mutism and retrograde amnesia after a high-voltage electric shock without evidence of lasting brain lesions. M.R. suddenly recovered from his mutism following a mild brain trauma 2 years later. Methods: M.R.'s neuropsychological pattern and anatomoclinical correlations were studied through (i) language and memory assessment to characterize his deficits, (ii) functional neuroimaging during a standard language paradigm, and (iii) assessment of frontal and left insular connectivity through diffusion tractography imaging and transcranial magnetic stimulation. A control evaluation was repeated after recovery. Findings: M.R. recovered from the left hemiparesis within 90 days of the accident, which indicated a transient right brain impairment. One year later, neurobehavioral, language and memory evaluations strongly suggested a dissociative component in the mutism and retrograde amnesia. Investigations (including MRI, fMRI, diffusion tensor imaging, EEG and r-TMS) were normal. Twenty-seven months after the electrical injury, M.R. had a very mild head injury which was followed by a rapid recovery of speech. However, the retrograde amnesia persisted. Discussion: This case indicates an interaction of both organic and dissociative mechanisms in order to explain the patient's symptoms. The study also illustrates dissociation in the time course of the two different dissociative symptoms in the same patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waveform-based tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of electrical properties in near-surface environments with unprecedented spatial resolution. A critical issue with waveform inversion is the a priori unknown source signal. Indeed, the estimation of the source pulse is notoriously difficult but essential for the effective application of this method. Here, we explore the viability and robustness of a recently proposed deconvolution-based procedure to estimate the source pulse during waveform inversion of crosshole georadar data, where changes in wavelet shape with location as a result of varying near-field conditions and differences in antenna coupling may be significant. Specifically, we examine whether a single, average estimated source current function can adequately represent the pulses radiated at all transmitter locations during a crosshole georadar survey, or whether a separate source wavelet estimation should be performed for each transmitter gather. Tests with synthetic and field data indicate that remarkably good tomographic reconstructions can be obtained using a single estimated source pulse when moderate to strong variability exists in the true source signal with antenna location. Only in the case of very strong variability in the true source pulse are tomographic reconstructions clearly improved by estimating a different source wavelet for each transmitter location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, subcortical structures such as the cerebellum are supposed to exert a modulatory effect on epileptic seizures, rather than being the primary seizure generator. We report a 14-month old girl presenting, since birth, with seizures symptomatic of a right cerebellar dysplasia, manifested as paroxystic contralateral hemifacial spasm and ipsilateral facial weakness. Multimodal imaging was used to investigate both anatomical landmarks related to the cerebellar lesion and mechanisms underlying seizure generation. Electric source imaging (ESI) supported the hypothesis of a right cerebellar epileptogenic generator in concordance with nuclear imaging findings; subsequently validated by intra-operative intralesional recordings. Diffusion spectrum imaging-related tractography (DSI) showed severe cerebellar structural abnormalities confirmed by histological examination. We suggest that hemispheric cerebellar lesions in cases like this are likely to cause epilepsy via an effect on the facial nuclei through ipsilateral and contralateral aberrant connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auditory spatial functions, including the ability to discriminate between the positions of nearby sound sources, are subserved by a large temporo-parieto-frontal network. With the aim of determining whether and when the parietal contribution is critical for auditory spatial discrimination, we applied single pulse transcranial magnetic stimulation on the right parietal cortex 20, 80, 90 and 150 ms post-stimulus onset while participants completed a two-alternative forced choice auditory spatial discrimination task in the left or right hemispace. Our results reveal that transient TMS disruption of right parietal activity impairs spatial discrimination when applied at 20 ms post-stimulus onset for sounds presented in the left (controlateral) hemispace and at 80 ms for sounds presented in the right hemispace. We interpret our finding in terms of a critical role for controlateral temporo-parietal cortices over initial stages of the building-up of auditory spatial representation and for a right hemispheric specialization in integrating the whole auditory space over subsequent, higher-order processing stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Voltage-gated sodium channels (Nav1.x) are important players in chronic pain. A particular interest has grown in Nav1.7, expressed in nociceptors, since mutations in its gene are associated to two inherited pain syndromes or insensitivity to pain. Rufinamide, a drug used to treat refractory epilepsy such as the Lennox-Gastaut syndrome, has been shown to reduce the number of action potentials in cortical neurons without completely blocking Na channels. Aim: The goal of this study was to investigate the effect of rufinamide on Nav1.7 current. Methods and results: Whole-cell patch clamp experiments were performed using HEK293 cells stably expressing Nav1.7. Rufinamide significantly decreased peak sodium current by 28.3, 21.2 and 12.5% at concentrations of 500, 100 and 50μM respectively (precise EC50 could not be calculated since higher rufinamide concentrations could not be achieved in physiological buffer solution). No significant difference on the V1/2 of voltage-dependence of activation was seen; however a shift in the steady-state inactivation curve was observed (-82.6 mV to -88.8 mV and -81.8 to -87.6 mV for 50 and 100 μM rufinamide respectively, p <0.005). Frequency-dependent inhibition of Nav1.7 was also influenced by the drug. One hundred μM rufinamide reduced the peak sodium current (in % of the peak current taken at the first sweep of a train of 50) from 90.8 to 80.8% (5Hz), 88.7 to 71.8% (10 Hz), 69.1 to 49.2% (25 Hz) and 22.3 to 9.8% (50 Hz) (all p <0.05). Onset of fast inactivation was not influenced by the drug since no difference in the time constant of current decay was observed. Conclusion: In the concentration range of plasma level in human treated for epilepsy, 15 μM, rufinamide only minimally blocks Nav1.7. However, it stabilizes the inactivated state and exerts frequencydependent inhibition of Nav1.7. These pharmacological properties may be of use in reducing ectopic discharges as a causal and symptom related contributor of neuropathic pain syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To test the accuracy of a new pulse oximeter sensor based on transmittance and reflectance. This sensor makes transillumination of tissue unnecessary and allows measurements on the hand, forearm, foot, and lower limb. DESIGN: Prospective, open, nonrandomized criterion standard study. SETTING: Neonatal intensive care unit, tertiary care center. PATIENTS: Sequential sample of 54 critically ill neonates (gestational age 27 to 42 wks; postnatal age 1 to 28 days) with arterial catheters in place. MEASUREMENTS AND MAIN RESULTS: A total of 99 comparisons between pulse oximetry and arterial saturation were obtained. Comparison of femoral or umbilical arterial blood with transcutaneous measurements on the lower limb (n = 66) demonstrated an excellent correlation (r2 = .96). The mean difference was +1.44% +/- 3.51 (SD) % (range -11% to +8%). Comparison of the transcutaneous values with the radial artery saturation from the corresponding upper limb (n = 33) revealed a correlation coefficient of 0.94 with a mean error of +0.66% +/- 3.34% (range -6% to +7%). The mean difference between noninvasive and invasive measurements was least with the test sensor on the hand, intermediate on the calf and arm, and greatest on the foot. The mean error and its standard deviation were slightly larger for arterial saturation values < 90% than for values > or = 90%. CONCLUSION: Accurate pulse oximetry saturation can be acquired from the hand, forearm, foot, and calf of critically ill newborns using this new sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cases of highly inflammatory dermatophytosis in humans, it is important to identify the possible source of animal transmission in order to prevent recurrence, family outbreaks or rapidly progressing epidemics. A survey of dermatophytes in pets during a 14-month period in Switzerland revealed, in addition to Microsporum canis, two different species of the Trichophyton mentagrophytes complex, Arthroderma benhamiae and Arthroderma vanbreuseghemii, all causing inflammatory dermatophytoses. Arthroderma benhamiae was only and frequently isolated from guinea pigs. Arthroderma vanbreuseghemii was isolated mainly from European short hair cats, but also from dogs and in one case from a pure-bred cat. Ninety-three percent of the cats carrying A. vanbreuseghemii were hunters and all had skin lesions. In contrast, cats with skin lesions that were strictly indoors were found to be almost exclusively infected by M. canis. Therefore, it can be suspected that infection with A. vanbreuseghemii occurred during hunting and that the natural source of this dermatophyte is either soil or an animal other than the cat, most probably a rodent.