5 resultados para Pulmonary drug delivery

em Université de Lausanne, Switzerland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pulmonary arterial hypertension is a rare disease with a poor prognosis. Epidemiological data are scarce, particularly in the paediatric population. A registry was recently developed in order to collect epidemiological data on patients with pulmonary arterial hypertension (PAH) in Switzerland. This is the first description of the paediatric data. Paediatric patients aged 0-18 years with the diagnosis of PAH were enrolled in the registry from 1999 to 2005 with informed consent from their parents. Patient characteristics, PAH aetiology, functional capacity, exercise capacity, treatments and outcome were among the most important data collected. A total of 23 patients (12 male, 11 female) have been thus far included in the registry. Median age at time of diagnosis was 3 years (range 1 month-18 years) and median follow-up was 3.47 years (range 1 day-12.6 years). PAH aetiologies are diagnosed as idiopathic in 8/23 patients (34.8%) and associated with congenital heart diseases in 12/23 (52.2%) or with pulmonary diseases in 3/23 patients (13.0%). Death occurred in 1 patient before treatment was initiated. Single treatments include medications with a calcium channel blocker in 2/23 patients, with bosentan in 10/23, and with inhaled iloprost in 1/23. Combined therapies include bosentan and inhaled iloprost in 7/23 patients, bosentan and sildenafil in 2/23 patients, and bosentan, sildenafil and inhaled iloprost in 2/23 patients. Additional oral anticoagulation is given to 14/23 patients and 8/23 patients are on oxygen therapy. NYHA class at baseline visit was obtained in 22/23 patients (4 NYHA 2, 17 NYHA 3 and 1 NYHA 4). Changes in NYHA class were observed over a 2-year period in 3/22 patients who improved from NYHA 3 to NYHA 2. Initial improvement of 6-minute walk distance was observed in 6/13 patients with a sustained improvement in 4. These preliminary results provide information on the epidemiology of PAH in children in Switzerland and demonstrate that most paediatric patients show stabilisation of the disease under new treatments. This underscores the utility of registries for rare diseases in providing crucial information in the era of new therapies. It may also help to improve the future medical approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intravitreal administration has been widely used since 20 years and has been shown to improve the treatment of diseases of the posterior segment of the eye with infectious origin or in edematous maculopathies. This route of administration allows to achieve high concentration of drug in the vitreous and avoids the problems resulting from systemic administration. However, two basic problems limit the use of intravitreal therapy. Many drugs are rapidly cleared from the vitreous humor; therefore, to reach and to maintain effective therapy repeated injections are necessary. Repeated intravitreal injections increase the risk of endophthalmitis, damage to lens, retinal detachment. Moreover, some drugs provoke a local toxicity at their effective dose inducing side-effects and possible retinal lesions. In this context, the development and the use of new drug delivery systems for intravitreal administration are necessary to treat chronic ocular diseases. Among them, particulate systems such as liposomes have been widely studied. Liposomes are easily injectable and permit to reduce the toxicity and to increase the residence time of several drugs in the eye. They are also able to protect in vivo poorly-stable molecules from degradation such as peptides and nucleic acids. Some promising results have been obtained for the treatment of retinitis induced by cytomegalovirus in human and more recently for the treatment of uveitis in animal. Finally, the fate of liposomes in ocular tissues and fluids after their injection into the vitreous and their elimination routes begin to be more known.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: Recent pharmacologic studies in our laboratory have suggested that the spinal neuropeptide Y (NPY) Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY. To rule out off-target effects, the present study used Y1-receptor-deficient (-/-) mice to further explore the contribution of Y1 receptors to pain modulation. METHODS AND RESULTS: Y1(-/-) mice exhibited reduced latency in the hotplate test of acute pain and a longer-lasting heat allodynia in the complete Freund's adjuvant (CFA) model of inflammatory pain. Y1 deletion did not change CFA-induced inflammation. Upon targeting the spinal NPY systems with intrathecal drug delivery, NPY reduced tactile and heat allodynia in the CFA model and the partial sciatic nerve ligation model of neuropathic pain. Importantly, we show for the first time that NPY does not exert these anti-allodynic effects in Y1(-/-) mice. Furthermore, in nerve-injured CD1 mice, concomitant injection of the potent Y1 antagonist BIBO3304 prevented the anti-allodynic actions of NPY. Neither NPY nor BIBO3304 altered performance on the Rotorod test, arguing against an indirect effect of motor function. CONCLUSION: The Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY.