2 resultados para Pt decorated TiO2NTs photoanode
em Université de Lausanne, Switzerland
Biased V beta usage in immature thymocytes is independent of DJ beta proximity and pT alpha pairing.
Resumo:
During thymus development, the TCR beta locus rearranges before the TCR alpha locus. Pairing of productively rearranged TCR beta-chains with an invariant pT alpha chain leads to the formation of a pre-TCR and subsequent expansion of immature pre-T cells. Essentially nothing is known about the TCR V beta repertoire in pre-T cells before or after the expression of a pre-TCR. Using intracellular staining, we show here that the TCR V beta repertoire is significantly biased at the earliest developmental stage in which VDJ beta rearrangement has occurred. Moreover (and in contrast to the V(H) repertoire in immature B cells), V beta repertoire biases in immature T cells do not reflect proximity of V beta gene segments to the DJ beta cluster, nor do they depend upon preferential V beta pairing with the pT alpha chain. We conclude that V gene repertoires in developing T and B cells are controlled by partially distinct mechanisms.
Resumo:
RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation.