15 resultados para Protein kinase

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous work we found that mezerein, a C kinase activator, as well as basic fibroblast growth factor (FGF-2) induce demyelination and partial oligodendrocyte dedifferentiation in highly differentiated aggregating brain cell cultures. Here we show that following protein kinase C activator-induced demyelination, effective remyelination occurs. We found that mezerein or FGF-2 caused a transient increase in DNA synthesis following a pronounced decrease of the myelin markers myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphohydrolase. Both oligodendrocytes and astrocytes were involved in this mitogenic response. Within 17 days after demyelination, myelin was restored to the level of the untreated controls. Transient mitotic activity was indispensable for remyelination. The present results suggest that myelinating oligodendrocytes retain the capacity to reenter the cell cycle, and that this plasticity is important for the regeneration of the oligodendrocyte lineage and remyelination. Although it cannot be excluded that a quiescent population of oligodendrocyte precursor cells was present in the aggregates and able to proliferate, differentiate and remyelinate, we could not find evidence supporting this view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear peroxisome proliferator-activated receptors (PPARs) alpha, beta, and gamma activate the transcription of multiple genes involved in lipid metabolism. Several natural and synthetic ligands have been identified for each PPAR isotype but little is known about the phosphorylation state of these receptors. We show here that activators of protein kinase A (PKA) can enhance mouse PPAR activity in the absence and the presence of exogenous ligands in transient transfection experiments. Activation function 1 (AF-1) of PPARs was dispensable for transcriptional enhancement, whereas activation function 2 (AF-2) was required for this effect. We also show that several domains of PPAR can be phosphorylated by PKA in vitro. Moreover, gel retardation experiments suggest that PKA stabilizes binding of the liganded PPAR to DNA. PKA inhibitors decreased not only the kinase-dependent induction of PPARs but also their ligand-dependent induction, suggesting an interaction between both pathways that leads to maximal transcriptional induction by PPARs. Moreover, comparing PPAR alpha knockout (KO) with PPAR alpha WT mice, we show that the expression of the acyl CoA oxidase (ACO) gene can be regulated by PKA-activated PPAR alpha in liver. These data demonstrate that the PKA pathway is an important modulator of PPAR activity, and we propose a model associating this pathway in the control of fatty acid beta-oxidation under conditions of fasting, stress, and exercise.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hemorrhage and resuscitation (H/R) leads to phosphorylation of mitogen-activated stress kinases, an event that is associated with organ damage. Recently, a specific, cell-penetrating, protease-resistant inhibitory peptide of the mitogen-activated protein kinase c-JUN N-terminal kinase (JNK) was developed (D-JNKI-1). Here, using this peptide, we tested if inhibition of JNK protects against organ damage after H/R. Male Sprague-Dawley rats were treated with D-JNKI-1 (11 mg/kg, i.p.) or vehicle. Thirty minutes later, rats were hemorrhaged for 1 h to a MAP of 30 to 35 mmHg and then resuscitated with 60% of the shed blood and twice the shed blood volume as Ringer lactate. Tissues were harvested 2 h later. ANOVA with Tukey post hoc analysis or Kruskal-Wallis ANOVA on ranks, P < 0.05, was considered significant. c-JUN N-terminal kinase inhibition decreased serum alanine aminotransferase activity as a marker of liver injury by 70%, serum creatine kinase activity by 67%, and serum lactate dehydrogenase activity by 60% as compared with vehicle treatment. The histological tissue damage observed was blunted after D-JNKI-1 pretreatment both for necrotic and apoptotic cell death. Hepatic leukocyte infiltration and serum IL-6 levels were largely diminished after D-JNKI-1 pretreatment. The extent of oxidative stress as evaluated by immunohistochemical detection of 4-hydroxynonenal was largely abrogated after JNK inhibition. After JNK inhibition, activation of cJUN after H/R was also reduced. Hemorrhage and resuscitation induces a systemic inflammatory response and leads to end-organ damage. These changes are mediated, at least in part, by JNK. Therefore, JNK inhibition deserves further evaluation as a potential treatment option in patients after resuscitated blood loss.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In response to stress or injury the heart undergoes a pathological remodeling process, associated with hypertrophy, cardiomyocyte death and fibrosis, that ultimately causes cardiac dysfunction and heart failure. It has become increasingly clear that signaling events associated with these pathological cardiac remodeling events are regulated by scaffolding and anchoring proteins, which allow coordination of pathological signals in space and time. A-kinase anchoring proteins (AKAPs) constitute a family of functionally related proteins that organize multiprotein signaling complexes that tether the cAMP-dependent protein kinase (PKA) as well as other signaling enzymes to ensure integration and processing of multiple signaling pathways. This review will discuss the role of AKAPs in the cardiac response to stress. Particular emphasis will be given to the adaptative process associated with cardiac hypoxia as well as the remodeling events linked to cardiac hypertrophy and heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism. However, apart from the receptor itself, substrates of phot1 kinase activity are less clearly established. Phototropism is also influenced by the cryptochromes and phytochromes photoreceptors that do not provide directional information but influence the process through incompletely characterized mechanisms. Here, we show that Phytochrome Kinase Substrate 4 (PKS4), a known element of phot1 signalling, is a substrate of phot1 kinase activity in vitro that is phosphorylated in a phot1-dependent manner in vivo. PKS4 phosphorylation is transient and regulated by a type 2-protein phosphatase. Moreover, phytochromes repress the accumulation of the light-induced phosphorylated form of PKS4 showing a convergence of photoreceptor activity on this signalling element. Our physiological analyses suggest that PKS4 phosphorylation is not essential for phototropism but is part of a negative feedback mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

FGF-2 has been implicated in the cardiac response to hypertrophic stimuli. Angiotensin II (Ang II) contributes to maintain elevated blood pressure in hypertensive individuals and exerts direct trophic effects on cardiac cells. However, the role of FGF-2 in Ang II-induced cardiac hypertrophy has not been established. Therefore, mice deficient in FGF-2 expression were studied using a model of Ang II-dependent hypertension and cardiac hypertrophy. Echocardiographic measurements show the presence of dilated cardiomyopathy in normotensive mice lacking FGF-2. Moreover, hypertensive mice without FGF-2 developed no compensatory cardiac hypertrophy. In wild-type mice, hypertrophy was associated with a stimulation of the c-Jun N-terminal kinase, the extracellular signal regulated kinase, and the p38 kinase pathways. In contrast, mitogen-activated protein kinase (MAPK) activation was markedly attenuated in FGF-2-deficient mice. In vitro, FGF-2 of fibroblast origin was demonstrated to be essential in the paracrine stimulation of MAPK activation in cardiomyocytes. Indeed, fibroblasts lacking FGF-2 expression have a defective capacity for releasing growth factors to induce hypertrophic responses in cardiomyocytes. Therefore, these results identify the cardiac fibroblast population as a primary integrator of hypertrophic stimuli in the heart, and suggest that FGF-2 is a crucial mediator of cardiac hypertrophy via autocrine/paracrine actions on cardiac cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1) is a modulator of the c-Jun N-terminal kinase (JNK) activity, which has been implicated in pleiotrophic cellular functions including cell differentiation, division, and death. In this study, we described the presence of IB1/JIP-1 in epithelium of the rat prostate as well as in the human prostatic LNCaP cells. We investigated the functional role of IB1/JIP-1 in LNCaP cells exposed to the proapoptotic agent N-(4-hydroxyphenyl)retinamide (4-HPR) which induced a reduction of IB1/JIP-1 content and a concomittant increase in JNK activity. Conversely, IB1/JIP-1 overexpression using a viral gene transfer prevented the JNK activation and the 4-HPR-induced apoptosis was blunted. In prostatic adenocarcinoma cells, the neuroendocrine (NE) phenotype acquisition is associated with tumor progression and androgen independence. During NE transdifferentiation of LNCaP cells, IB1/JIP-1 levels were increased. This regulated expression of IB1/JIP-1 is secondary to a loss of the neuronal transcriptional repressor neuron restrictive silencing factor (NRSF/REST) function which is known to repress IB1/JIP-1. Together, these results indicated that IB1/JIP-1 participates to the neuronal phenotype of the human LNCaP cells and is a regulator of JNK signaling pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carriers of mutations in the cell cycle checkpoint protein kinase ataxia telangiectasia mutated (ATM), which represent 1-2% of the general population, have an increased risk of breast cancer. However, experimental evidence that ATM deficiency contributes to human breast carcinogenesis is lacking. We report here that in MCF-10A and MCF-12A cells, which are well established normal human mammary gland epithelial cell models, partial or almost complete stable ATM silencing or pharmacological inhibition resulted in cellular transformation, genomic instability, and formation of dysplastic lesions in NOD/SCID mice. These effects did not require the activity of exogenous DNA-damaging agents and were preceded by an unsuspected and striking increase in cell proliferation also observed in primary human mammary gland epithelial cells. Increased proliferation correlated with a dramatic, transient, and proteasome-dependent reduction of p21(WAF1/CIP1) and p27(KIP1) protein levels, whereas little or no effect was observed on p21(WAF1/CIP1) or p27(KIP1) mRNAs. p21(WAF1/CIP1) silencing also increased MCF-10A cell proliferation, thus identifying p21(WAF1/CIP1) down-regulation as a mediator of the proliferative effect of ATM inhibition. Our findings provide the first experimental evidence that ATM is a human breast tumor suppressor. In addition, they mirror the sensitivity of ATM tumor suppressor function and unveil a new mechanism by which ATM might prevent human breast tumorigenesis, namely a direct inhibitory effect on the basal proliferation of normal mammary epithelial cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Humans and mice lacking functional caspase-8 in T cells manifest a profound immunodeficiency syndrome due to defective T cell antigen receptor (TCR)-induced NF-kappaB signaling and proliferation. It is unknown how caspase-8 is activated following T cell stimulation, and what is the caspase-8 substrate(s) that is necessary to initiate T cell cycling. We observe that following TCR ligation, a small portion of total cellular caspase-8 and c-FLIP(L) rapidly migrate to lipid rafts where they associate in an active caspase complex. Activation of caspase-8 in lipid rafts is followed by rapid cleavage of c-FLIP(L) at a known caspase-8 cleavage site. The active caspase.c-FLIP complex forms in the absence of Fas (CD95/APO1) and associates with the NF-kappaB signaling molecules RIP1, TRAF2, and TRAF6, as well as upstream NF-kappaB regulators PKC theta, CARMA1, Bcl-10, and MALT1, which connect to the TCR. The lack of caspase-8 results in the absence of MALT1 and Bcl-10 in the active caspase complex. Consistent with this observation, inhibition of caspase activity attenuates NF-kappaB activation. The current findings define a link among TCR, caspases, and the NF-kappaB pathway that occurs in a sequestered lipid raft environment in T cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gastrointestinal stromal tumours (GIST), despite being rare, pose a relevant medical problem from the viewpoint of diagnosis and management. GIST are fragile, liable to metastasize and often located in delicate structures. Surgical options, therefore, are limited. In the last decade an improved understanding of the molecular mechanisms of the disease has resulted in novel modes of treatment. The introduction of systemic tyrosine kinase inhibitor therapy with imatinib has significantly improved the outcome of the disease and prolonged the survival of GIST patients. For many patients the acute threat of a deadly cancer has been transformed into a manageable chronic condition. Drug safety, tolerability and compliance, subjects of concern in all long-term therapies, have proven to be acceptable for the tyrosine kinase inhibitor imatinib. The present paper provides a compact overview of the epidemiology, pathophysiology and morphology of GIST, with special reference to the underlying molecular biology. Relevant aspects of diagnosis, therapy and monitoring of the disease are reviewed with particular emphasis on the available clinical evidence and recent guidelines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The arenavirus Lassa virus (LASV) causes a severe haemorrhagic fever with high mortality in man. The cellular receptor for LASV is dystroglycan (DG). DG is a ubiquitous receptor for extracellular matrix (ECM) proteins, which cooperates with β1 integrins to control cell-matrix interactions. Here, we investigated whether LASV binding to DG triggers signal transduction, mimicking the natural ligands. Engagement of DG by LASV resulted in the recruitment of the adaptor protein Grb2 and the protein kinase MEK1 by the cytoplasmic domain of DG without activating the MEK/ERK pathway, indicating assembly of an inactive signalling complex. LASV binding to cells however affected the activation of the MEK/ERK pathway via α6β1 integrins. The virus-induced perturbation of α6β1 integrin signalling critically depended on high-affinity LASV binding to DG and DG's cytoplasmic domain, indicating that LASV-receptor binding perturbed signalling cross-talk between DG and β1 integrins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NMDA receptors (NMDARs) mediate ischemic brain damage, for which interactions between the C termini of NR2 subunits and PDZ domain proteins within the NMDAR signaling complex (NSC) are emerging therapeutic targets. However, expression of NMDARs in a non-neuronal context, lacking many NSC components, can still induce cell death. Moreover, it is unclear whether targeting the NSC will impair NMDAR-dependent prosurvival and plasticity signaling. We show that the NMDAR can promote death signaling independently of the NR2 PDZ ligand, when expressed in non-neuronal cells lacking PSD-95 and neuronal nitric oxide synthase (nNOS), key PDZ proteins that mediate neuronal NMDAR excitotoxicity. However, in a non-neuronal context, the NMDAR promotes cell death solely via c-Jun N-terminal protein kinase (JNK), whereas NMDAR-dependent cortical neuronal death is promoted by both JNK and p38. NMDAR-dependent pro-death signaling via p38 relies on neuronal context, although death signaling by JNK, triggered by mitochondrial reactive oxygen species production, does not. NMDAR-dependent p38 activation in neurons is triggered by submembranous Ca(2+), and is disrupted by NOS inhibitors and also a peptide mimicking the NR2B PDZ ligand (TAT-NR2B9c). TAT-NR2B9c reduced excitotoxic neuronal death and p38-mediated ischemic damage, without impairing an NMDAR-dependent plasticity model or prosurvival signaling to CREB or Akt. TAT-NR2B9c did not inhibit JNK activation, and synergized with JNK inhibitors to ameliorate severe excitotoxic neuronal loss in vitro and ischemic cortical damage in vivo. Thus, NMDAR-activated signals comprise pro-death pathways with differing requirements for PDZ protein interactions. These signals are amenable to selective inhibition, while sparing synaptic plasticity and prosurvival signaling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic intake of saturated free fatty acids is associated with diabetes and may contribute to the impairment of functional beta cell mass. Mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) is a candidate gene for diabetes that is required for beta cell survival and glucose-induced insulin secretion (GSIS). In this study we investigated whether IB1 expression is required for preserving beta cell survival and function in response to palmitate. Chronic exposure of MIN6 and isolated rat islets cells to palmitate led to reduction of the IB1 mRNA and protein content. Diminution of IB1 mRNA and protein level relied on the inducible cAMP early repressor activity and proteasome-mediated degradation, respectively. Suppression of IB1 level mimicked the harmful effects of palmitate on the beta cell survival and GSIS. Conversely, ectopic expression of IB1 counteracted the deleterious effects of palmitate on the beta cell survival and insulin secretion. These findings highlight the importance in preserving the IB1 content for protecting beta cell against lipotoxicity in diabetes.