6 resultados para Promiscuity.

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants and form extensive underground hyphal networks simultaneously connecting the roots of different plant species. No empirical evidence exists for either anastomosis between genetically different AMF or genetic exchange.Five isolates of one population of Glomus intraradices were used to study anastomosis between hyphae of germinating spores. We show that genetically distinct AMF, from the same field, anastomose, resulting in viable cytoplasmic connections through which genetic exchange could potentially occur.Pairs of genetically different isolates were then co-cultured in an in vitro system.Freshly produced spores were individually germinated to establish new cultures.Using several molecular tools, we show that genetic exchange occurred between genetically different AMF. Specific genetic markers from each parent were transmitted to the progeny. The progeny were viable, forming symbioses with plant roots. The phenotypes of some of the progeny were significantly different from either parent.Our results indicate that considerable promiscuity could occur in these fungi because nine out of 10 combinations of different isolates anastomosed. The ability to perform genetic crosses between AMF experimentally lays a foundation for understanding the genetics and evolutionary biology of these important plants symbionts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using game theory, we developed a kin-selection model to investigate the consequences of local competition and inbreeding depression on the evolution of natal dispersal. Mating systems have the potential to favor strong sex biases in dispersal because sex differences in potential reproductive success affect the balance between local resource competition and local mate competition. No bias is expected when local competition equally affects males and females, as happens in monogamous systems and also in polygynous or promiscuous ones as long as female fitness is limited by extrinsic factors (breeding resources). In contrast, a male-biased dispersal is predicted when local mate competition exceeds local resource competition, as happens under polygyny/promiscuity when female fitness is limited by intrinsic factors (maximal rate of processing resources rather than resources themselves). This bias is reinforced by among-sex interactions: female philopatry enhances breeding opportunities for related males, while male dispersal decreases the chances that related females will inbreed. These results meet empirical patterns in mammals: polygynous/promiscuous species usually display a male-biased dispersal, while both sexes disperse in monogamous species. A parallel is drawn with sex-ratio theory, which also predicts biases toward the sex that suffers less from local competition. Optimal sex ratios and optimal sex-specific dispersal show mutual dependence, which argues for the development of coevolution models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years much progress has been made towards understanding the selective forces involved in the evolution of social behaviour including conflicts over reproduction among group members. Here, I argue that an important additional step necessary for advancing our understanding of the resolution of potential conflicts within insect societies is to consider the genetics of the behaviours involved. First, I discuss how epigenetic modifications of behaviour may affect conflict resolution within groups. Second, I review known natural polymorphisms of social organization to demonstrate that a lack of consideration of the genetic mechanisms involved may lead to erroneous explanations of the adaptive significance of behaviour. Third, I suggest that, on the basis of recent genetic studies of sexual conflict in Drosophila, it is necessary to reconsider the possibility of within-group manipulation by means of chemical substances (i.e. pheromones). Fourth, I address the issue of direct versus indirect genetic effects, which is of particular importance for the study of behaviour in social groups. Fifth, I discuss the issue of how a genetic influence on dominance hierarchies and reproductive division of labour can have secondary effects, for example in the evolution of promiscuity. Finally, because the same sets of genes (e.g. those implicated in chemical signalling and the responses that are triggered) may be used even in species as divergent as ants, cooperative breeding birds and primates, an integration of genetic mechanisms into the field of social evolution may also provide unifying ideas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inbreeding load affects not only the average fecundity of philopatric individuals but also its variance. From bet-hedging theory, this should add further dispersal pressures to those stemming from the mere avoidance of inbreeding. Pressures on both sexes are identical under monogamy or promiscuity. Under polygyny, by contrast, the variance in reproductive output decreases with dispersal rate in females but increases in males, which should induce a female-biased dispersal. To test this prediction, we performed individual-based simulations. From our results, a female-biased dispersal indeed emerges as both polygyny and inbreeding load increase. We conclude that sex-biased dispersal may be selected for as a bet-hedging strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theory predicts that if most mutations are deleterious to both overall fitness and condition-dependent traits affecting mating success, sexual selection will purge mutation load and increase nonsexual fitness. We explored this possibility with populations of mutagenized Drosophila melanogaster exhibiting elevated levels of deleterious variation and evolving in the presence or absence of male-male competition and female choice. After 60 generations of experimental evolution, monogamous populations exhibited higher total reproductive output than polygamous populations. Parental environment also affected fitness measures - flies that evolved in the presence of sexual conflict showed reduced nonsexual fitness when their parents experienced a polygamous environment, indicating trans-generational effects of male harassment and highlighting the importance of a common garden design. This cost of parental promiscuity was nearly absent in monogamous lines, providing evidence for the evolution of reduced sexual antagonism. There was no overall difference in egg-to-adult viability between selection regimes. If mutation load was reduced by the action of sexual selection in this experiment, the resultant gain in fitness was not sufficient to overcome the costs of sexual antagonism.