132 resultados para Probability Weight : Rank-dependent Utility
em Université de Lausanne, Switzerland
Resumo:
Medical expenditure risk can pose a major threat to living standards. We derive decomposable measures of catastrophic medical expenditure risk from reference-dependent utility with loss aversion. We propose a quantile regression based method of estimating risk exposure from cross-section data containing information on the means of financing health payments. We estimate medical expenditure risk in seven Asian countries and find it is highest in Laos and China, and is lowest in Malaysia. Exposure to risk is generally higher for households that have less recourse to self-insurance, lower incomes, wealth and education, and suffer from chronic illness.
Resumo:
OBJECTIVE: To explore the association between patients' body mass index (BMI) and their experiences with inpatient care. DESIGN: Cross-sectional. Mail survey. SETTING: University Hospital of Geneva. PARTICIPANTS: Questionnaires were mailed to 2385 eligible adult patients, 6 weeks after discharge (response rate = 69%). MAIN OUTCOME MEASURES: Patients' experiences with care were measured using the Picker inpatient survey questionnaire. BMI was calculated using self-reported height and weight. Main dependent variables were the global Picker patient experience (PPE-15) score and nine dimension-specific problem scores, scored from 0 (no reported problems) to 1 (all items coded as problems). We used linear regressions, adjusting for age, gender, education, subjective health, smoking and hospitalization, to assess the association between patients' BMI and their experiences with inpatient care. RESULTS: Of the patients, 4.8% were underweight, 50.8% had normal weight, 30.3% were overweight and 14.1% were obese. Adjusted analysis shows that compared with normal weight, obesity was significantly associated with fewer problematic items in the surgery-related information domain, and being underweight or overweight was associated with more problematic items in the involvement of family/friends domain. The global PPE-15 score was significantly higher (more problems) for underweight patients. CONCLUSIONS: Underweight patients, but not obese patients, reported more problems during hospitalization.
Resumo:
Polyhydroxyalkanoates (PHAs) are polyesters naturally produced by bacteria that have properties of biodegradable plastics and elastomers. A PHA synthase from Pseudomonas aeruginosa modified at the carboxy-end for peroxisomal targeting was transformed in Pichia pastoris. The PHA synthase was expressed under the control of the promoter of the P. pastoris acyl-CoA oxidase gene. Synthesis of up to 1% medium-chain-length PHA per g dry weight was dependent on both the expression of the PHA synthase and the presence of oleic acid in the medium. PHA accumulated as inclusions within the peroxisomes. P. pastoris could be used as a model system to study how peroxisomal metabolism needs to be modified to increase PHA production in other eukaryotes, such as plants.
Resumo:
Activation of the mitogen-activated protein (MAP) kinase cascade by progesterone in Xenopus oocytes leads to a marked down-regulation of activity of the amiloride-sensitive epithelial sodium channel (ENaC). Here we have studied the signaling pathways involved in progesterone effect on ENaC activity. We demonstrate that: (i) the truncation of the C termini of the alphabetagammaENaC subunits results in the loss of the progesterone effect on ENaC; (ii) the effect of progesterone was also suppressed by mutating conserved tyrosine residues in the Pro-X-X-Tyr (PY) motif of the C termini of the beta and gamma ENaC subunits (beta(Y618A) and gamma(Y628A)); (iii) the down-regulation of ENaC activity by progesterone was also suppressed by co-expression ENaC subunits with a catalytically inactive mutant of Nedd4-2, a ubiquitin ligase that has been previously demonstrated to decrease ENaC cell-surface expression via a ubiquitin-dependent internalization/degradation mechanism; (iv) the effect of progesterone was significantly reduced by suppression of consensus sites (beta(T613A) and gamma(T623A)) for ENaC phosphorylation by the extracellular-regulated kinase (ERK), a MAP kinase previously shown to facilitate the binding of Nedd4 ubiquitin ligases to ENaC; (v) the quantification of cell-surface-expressed ENaC subunits revealed that progesterone decreases ENaC open probability (whole cell P(o), wcP(o)) and not its cell-surface expression. Collectively, these results demonstrate that the binding of active Nedd4-2 to ENaC is a crucial step in the mechanism of ENaC inhibition by progesterone. Upon activation of ERK, the effect of Nedd4-2 on ENaC open probability can become more important than its effect on ENaC cell-surface expression.
Resumo:
Natural populations are of finite size and organisms carry multilocus genotypes. There are, nevertheless, few results on multilocus models when both random genetic drift and natural selection affect the evolutionary dynamics. In this paper we describe a formalism to calculate systematic perturbation expansions of moments of allelic states around neutrality in populations of constant size. This allows us to evaluate multilocus fixation probabilities (long-term limits of the moments) under arbitrary strength of selection and gene action. We show that such fixation probabilities can be expressed in terms of selection coefficients weighted by mean first passages times of ancestral gene lineages within a single ancestor. These passage times extend the coalescence times that weight selection coefficients in one-locus perturbation formulas for fixation probabilities. We then apply these results to investigate the Hill-Robertson effect and the coevolution of helping and punishment. Finally, we discuss limitations and strengths of the perturbation approach. In particular, it provides accurate approximations for fixation probabilities for weak selection regimes only (Ns < or = 1), but it provides generally good prediction for the direction of selection under frequency-dependent selection.
Resumo:
Colour polymorphism in vertebrates is usually under genetic control and may be associated with variation in physiological traits. The melanocortin 1 receptor (Mc1r) has been involved repeatedly in melanin-based pigmentation but it was thought to have few other physiological effects. However, recent pharmacological studies suggest that MC1R could regulate the aspects of immunity. We investigated whether variation at Mc1r underpins plumage colouration in the Eleonora's falcon. We also examined whether nestlings of the different morphs differed in their inflammatory response induced by phytohemagglutinin (PHA). Variation in colouration was due to a deletion of four amino acids at the Mc1r gene. Cellular immune response was morph specific. In males, but not in females, dark nestling mounted a lower PHA response than pale ones. Although correlative, our results raise the neglected possibility that MC1R has pleiotropic effects, suggesting a potential role of immune capacity and pathogen pressure on the maintenance of colour polymorphism in this species.
Resumo:
Although extended secondary prophylaxis with low-molecular-weight heparin was recently shown to be more effective than warfarin for cancer-related venous thromboembolism, its cost-effectiveness compared to traditional prophylaxis with warfarin is uncertain. We built a decision analytic model to evaluate the clinical and economic outcomes of a 6-month course of low-molecular-weight heparin or warfarin therapy in 65-year-old patients with cancer-related venous thromboembolism. We used probability estimates and utilities reported in the literature and published cost data. Using a US societal perspective, we compared strategies based on quality-adjusted life-years (QALYs) and lifetime costs. The incremental cost-effectiveness ratio of low-molecular-weight heparin compared with warfarin was 149,865 dollars/QALY. Low-molecular-weight heparin yielded a quality-adjusted life expectancy of 1.097 QALYs at the cost of 15,329 dollars. Overall, 46% (7108 dollars) of the total costs associated with low-molecular-weight heparin were attributable to pharmacy costs. Although the low-molecular-weigh heparin strategy achieved a higher incremental quality-adjusted life expectancy than the warfarin strategy (difference of 0.051 QALYs), this clinical benefit was offset by a substantial cost increment of 7,609 dollars. Cost-effectiveness results were sensitive to variation of the early mortality risks associated with low-molecular-weight heparin and warfarin and the pharmacy costs for low-molecular-weight heparin. Based on the best available evidence, secondary prophylaxis with low-molecular-weight heparin is more effective than warfarin for cancer-related venous thromboembolism. However, because of the substantial pharmacy costs of extended low-molecular-weight heparin prophylaxis in the US, this treatment is relatively expensive compared with warfarin.
Resumo:
ABSTRACT: BACKGROUND: Although smokers tend to have a lower body-mass index than non-smokers, smoking may favour abdominal body fat accumulation. To our knowledge, no population-based studies have assessed the relationship between smoking and body fat composition. We assessed the association between cigarette smoking and waist circumference, body fat, and body-mass index. METHODS: Height, weight, and waist circumference were measured among 6,123 Caucasians (ages 35-75) from a cross-sectional population-based study in Switzerland. Abdominal obesity was defined as waist circumference>=102 cm for men and >=88 cm for women. Body fat (percent total body weight) was measured by electrical bioimpedance. Age- and sex-specific body fat cut-offs were used to define excess body fat. Cigarettes smoked per day were assessed by self-administered questionnaire. Age-adjusted means and odds ratios were calculated using linear and logistic regression. RESULTS: Current smokers (29% of men and 24% of women) had lower mean waist circumference, body fat percentage, and body-mass index compared with non-smokers. Age-adjusted mean waist circumference and body fat increased with cigarettes smoked per day among smokers. The association between cigarettes smoked per day and body-mass index was non-significant. Compared with light smokers, the adjusted odds ratio (OR) for abdominal obesity in men was 1.28 (0.78-2.10) for moderate smokers and 1.94 (1.15-3.27) for heavy smokers (P=0.03 for trend), and 1.07 (0.72-1.58) and 2.15 (1.26-3.64) in female moderate and heavy smokers, respectively (P<0.01 for trend). Compared with light smokers, the OR for excess body fat in men was 1.05 (95% CI: 0.58-1.92) for moderate smokers and 1.15 (0.60-2.20) for heavy smokers (P=0.75 for trend) and 1.34 (0.89-2.00) and 2.11 (1.25-3.57), respectively in women (P=0.07 for trend). CONCLUSION: Among smokers, cigarettes smoked per day were positively associated with central fat accumulation, particularly in women.
Resumo:
BACKGROUND: The mutation status of the BRAF and KRAS genes has been proposed as prognostic biomarker in colorectal cancer. Of them, only the BRAF V600E mutation has been validated independently as prognostic for overall survival and survival after relapse, while the prognostic value of KRAS mutation is still unclear. We investigated the prognostic value of BRAF and KRAS mutations in various contexts defined by stratifications of the patient population. METHODS: We retrospectively analyzed a cohort of patients with stage II and III colorectal cancer from the PETACC-3 clinical trial (N = 1,423), by assessing the prognostic value of the BRAF and KRAS mutations in subpopulations defined by all possible combinations of the following clinico-pathological variables: T stage, N stage, tumor site, tumor grade and microsatellite instability status. In each such subpopulation, the prognostic value was assessed by log rank test for three endpoints: overall survival, relapse-free survival, and survival after relapse. The significance level was set to 0.01 for Bonferroni-adjusted p-values, and a second threshold for a trend towards statistical significance was set at 0.05 for unadjusted p-values. The significance of the interactions was tested by Wald test, with significance level of 0.05. RESULTS: In stage II-III colorectal cancer, BRAF mutation was confirmed a marker of poor survival only in subpopulations involving microsatellite stable and left-sided tumors, with higher effects than in the whole population. There was no evidence for prognostic value in microsatellite instable or right-sided tumor groups. We found that BRAF was also prognostic for relapse-free survival in some subpopulations. We found no evidence that KRAS mutations had prognostic value, although a trend was observed in some stratifications. We also show evidence of heterogeneity in survival of patients with BRAF V600E mutation. CONCLUSIONS: The BRAF mutation represents an additional risk factor only in some subpopulations of colorectal cancers, in others having limited prognostic value. However, in the subpopulations where it is prognostic, it represents a marker of much higher risk than previously considered. KRAS mutation status does not seem to represent a strong prognostic variable.
Resumo:
The endothelin receptor antagonist avosentan may cause fluid overload at doses of 25 and 50 mg, but the actual mechanisms of this effect are unclear. We conducted a placebo-controlled study in 23 healthy subjects to assess the renal effects of avosentan and the dose dependency of these effects. Oral avosentan was administered once daily for 8 days at doses of 0.5, 1.5, 5, and 50 mg. The drug induced a dose-dependent median increase in body weight, most pronounced at 50 mg (0.8 kg on day 8). Avosentan did not affect renal hemodynamics or plasma electrolytes. A dose-dependent median reduction in the fractional renal excretion of sodium was found (up to 8.7% at avosentan 50 mg); this reduction was paralleled by a dose-related increase in proximal sodium reabsorption. It is suggested that avosentan dose-dependently induces sodium retention by the kidney, mainly through proximal tubular effects. The potential clinical benefits of avosentan should therefore be investigated at doses of <or= 5 mg.
Resumo:
Background: The modulation of energetic homeostasis by pollutants has recently emerged as a potential contributor to the onset of metabolic disorders. Diethylhexyl phthalate (DEHP) is a widely used industrial plasticizer to which humans are widely exposed. Phthalates can activate the three peroxisome proliferatoractivated receptor (PPAR) isotypes on cellular models and induce peroxisome proliferation in rodents.Objectives: In this study, we aimed to evaluate the systemic and metabolic consequences of DEHP exposure that have remained so far unexplored and to characterize the underlying molecular mechanisms of action.Methods: As a proof of concept and mechanism, genetically engineered mouse models of PPARs were exposed to high doses of DEHP, followed by metabolic and molecular analyses.Results: DEHP-treated mice were protected from diet-induced obesity via PPARalpha-dependent activation of hepatic fatty acid catabolism, whereas the activity of neither PPARbeta nor PPARgamma was affected. However, the lean phenotype observed in response to DEHP in wild-type mice was surprisingly abolished in PPARalpha-humanized mice. These species differences are associated with a different pattern of coregulator recruitment.Conclusion: These results demonstrate that DEHP exerts species-specific metabolic actions that rely to a large extent on PPARalpha signaling and highlight the metabolic importance of the species-specific activation of PPARalpha by xenobiotic compounds. Editor's SummaryDiethylhexyl phthalate (DEHP) is an industrial plasticizer used in cosmetics, medical devices, food packaging, and other applications. Evidence that DEHP metabolites can activate peroxisome proliferatoractivated receptors (PPARs) involved in fatty acid oxidation (PPARalpha and PPARbeta) and adiposite function and insulin resistance (PPARgamma) has raised concerns about potential effects of DEHP on metabolic homeostasis. In rodents, PPARalpha activation also induces hepatic peroxisome proliferation, but this response to PPARalpha activation is not observed in humans. Feige et al. (p. 234) evaluated systemic and metabolic consequences of high-dose oral DEHP in combination with a high-fat diet in wild-type mice and genetically engineered mouse PPAR models. The authors report that mice exposed to DEHP gained less weight than controls, without modifying their feeding behavior; they also exhibited lower triglyceride levels, smaller adipocytes, and improved glucose tolerance compared with controls. These effects, which were observed in mice fed both high-fat and standard diets, appeared to be mediated by PPARalpha-dependent activation of hepatic fatty acid catabolism without apparent involvement of PPARbeta or PPARgamma. However, mouse models that expressed human (versus mouse) PPARalpha tended to gain more weight on a high-fat diet than their DHEP-unexposed counterparts. The authors conclude that findings support species-specific metabolic effects of DEHP mediated by PPARalpha activation.
Multimodel inference and multimodel averaging in empirical modeling of occupational exposure levels.
Resumo:
Empirical modeling of exposure levels has been popular for identifying exposure determinants in occupational hygiene. Traditional data-driven methods used to choose a model on which to base inferences have typically not accounted for the uncertainty linked to the process of selecting the final model. Several new approaches propose making statistical inferences from a set of plausible models rather than from a single model regarded as 'best'. This paper introduces the multimodel averaging approach described in the monograph by Burnham and Anderson. In their approach, a set of plausible models are defined a priori by taking into account the sample size and previous knowledge of variables influent on exposure levels. The Akaike information criterion is then calculated to evaluate the relative support of the data for each model, expressed as Akaike weight, to be interpreted as the probability of the model being the best approximating model given the model set. The model weights can then be used to rank models, quantify the evidence favoring one over another, perform multimodel prediction, estimate the relative influence of the potential predictors and estimate multimodel-averaged effects of determinants. The whole approach is illustrated with the analysis of a data set of 1500 volatile organic compound exposure levels collected by the Institute for work and health (Lausanne, Switzerland) over 20 years, each concentration having been divided by the relevant Swiss occupational exposure limit and log-transformed before analysis. Multimodel inference represents a promising procedure for modeling exposure levels that incorporates the notion that several models can be supported by the data and permits to evaluate to a certain extent model selection uncertainty, which is seldom mentioned in current practice.
Resumo:
AIMS/HYPOTHESIS: High- vs low-glycaemic index (GI) diets unfavourably affect body fat mass and metabolic markers in rodents. Different effects of these diets could be age-dependent, as well as mediated, in part, by carbohydrate-induced stimulation of glucose-dependent insulinotrophic polypeptide (GIP) signalling. METHODS: Young-adult (16 weeks) and aged (44 weeks) male wild-type (C57BL/6J) and GIP-receptor knockout (Gipr ( -/- )) mice were exposed to otherwise identical high-carbohydrate diets differing only in GI (20-26 weeks of intervention, n = 8-10 per group). Diet-induced changes in body fat distribution, liver fat, locomotor activity, markers of insulin sensitivity and substrate oxidation were investigated, as well as changes in the gene expression of anorexigenic and orexigenic hypothalamic factors related to food intake. RESULTS: Body weight significantly increased in young-adult high- vs low-GI fed mice (two-way ANOVA, p < 0.001), regardless of the Gipr genotype. The high-GI diet in young-adult mice also led to significantly increased fat mass and changes in metabolic markers that indicate reduced insulin sensitivity. Even though body fat mass also slightly increased in high- vs low-GI fed aged wild-type mice (p < 0.05), there were no significant changes in body weight and estimated insulin sensitivity in these animals. However, aged Gipr ( -/- ) vs wild-type mice on high-GI diet showed significantly lower cumulative net energy intake, increased locomotor activity and improved markers of insulin sensitivity. CONCLUSIONS/INTERPRETATION: The metabolic benefits of a low-GI diet appear to be more pronounced in younger animals, regardless of the Gipr genotype. Inactivation of GIP signalling in aged animals on a high-GI diet, however, could be beneficial.
Resumo:
Colostrum feeding and glucocorticoid administration affect glucose metabolism and insulin release in calves. We have tested the hypothesis that dexamethasone as well as colostrum feeding influence insulin-dependent glucose metabolism in neonatal calves using the euglycemic-hyperinsulinemic clamp technique. Newborn calves were fed either colostrum or a milk-based formula (n=14 per group) and in each feeding group, half of the calves were treated with dexamethasone (30 microg/[kg body weight per day]). Preprandial blood samples were taken on days 1, 2, and 4. On day 5, insulin was infused for 3h and plasma glucose concentrations were kept at 5 mmol/L+/-10%. Clamps were combined with [(13)C]-bicarbonate and [6,6-(2)H]-glucose infusions for 5.5h (i.e., from -150 to 180 min, relative to insulin infusion) to determine glucose turnover, glucose appearance rate (Ra), endogenous glucose production (eGP), and gluconeogenesis before and at the end of the clamp. After the clamp liver biopsies were taken to measure mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC). Dexamethasone increased plasma glucose, insulin, and glucagon concentrations in the pre-clamp period thus necessitating a reduction in the rate of glucose infusion to maintain euglycemia during the clamp. Glucose turnover and Ra increased during the clamp and were lower at the end of the clamp in dexamethasone-treated calves. Dexamethasone treatment did not affect basal gluconeogenesis or eGP. At the end of the clamp, dexamethasone reduced eGP and PC mRNA levels, whereas mitochondrial PEPCK mRNA levels increased. In conclusion, insulin increased glucose turnover and dexamethasone impaired insulin-dependent glucose metabolism, and this was independent of different feeding.
Resumo:
In many socially monogamous birds, both partners perform extrapair copulations (EPC). As this behaviour potentially inflicts direct costs on females, they are currently hypothesized to search for genetic benefits for descendants, either as 'good' or 'complementary' genes. Although these hypotheses have found some support, several studies failed to find any beneficial consequence of EPC, and whether this behaviour is adaptive to females is subject to discussion. Here, we test these two hypotheses in a natural population of blue tits by accounting for the effect of most parameters known to potentially affect extrapair fertilization. Results suggest that female body mass affected the type of extrapair genetic benefits obtained. Heavy females obtained extrapair fertilizations when their social male was of low quality (as reflected by sexual display) and produced larger extrapair than within-pair chicks. Lean females obtained extrapair fertilizations when their social mate was genetically similar, thereby producing more heterozygous extrapair chicks. Our results suggest that mating patterns may be condition-dependent.