68 resultados para Probabilistic methodology

em Université de Lausanne, Switzerland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To provide a quantitative support to the handwriting evidence evaluation, a new method was developed through the computation of a likelihood ratio based on a Bayesian approach. In the present paper, the methodology is briefly described and applied to data collected within a simulated case of a threatening letter. Fourier descriptors are used to characterise the shape of loops of handwritten characters "a" of the true writer of the threatening letter, and: 1) with reference characters "a" of the true writer of the threatening letter, and then 2) with characters "a" of a writer who did not write the threatening letter. The findings support that the probabilistic methodology correctly supports either the hypothesis of authorship or the alternative hypothesis. Further developments will enable the handwriting examiner to use this methodology as a helpful assistance to assess the strength of evidence in handwriting casework.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuing developments in science and technology mean that the amounts of information forensic scientists are able to provide for criminal investigations is ever increasing. The commensurate increase in complexity creates difficulties for scientists and lawyers with regard to evaluation and interpretation, notably with respect to issues of inference and decision. Probability theory, implemented through graphical methods, and specifically Bayesian networks, provides powerful methods to deal with this complexity. Extensions of these methods to elements of decision theory provide further support and assistance to the judicial system. Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science provides a unique and comprehensive introduction to the use of Bayesian decision networks for the evaluation and interpretation of scientific findings in forensic science, and for the support of decision-makers in their scientific and legal tasks. Includes self-contained introductions to probability and decision theory. Develops the characteristics of Bayesian networks, object-oriented Bayesian networks and their extension to decision models. Features implementation of the methodology with reference to commercial and academically available software. Presents standard networks and their extensions that can be easily implemented and that can assist in the reader's own analysis of real cases. Provides a technique for structuring problems and organizing data based on methods and principles of scientific reasoning. Contains a method for the construction of coherent and defensible arguments for the analysis and evaluation of scientific findings and for decisions based on them. Is written in a lucid style, suitable for forensic scientists and lawyers with minimal mathematical background. Includes a foreword by Ian Evett. The clear and accessible style of this second edition makes this book ideal for all forensic scientists, applied statisticians and graduate students wishing to evaluate forensic findings from the perspective of probability and decision analysis. It will also appeal to lawyers and other scientists and professionals interested in the evaluation and interpretation of forensic findings, including decision making based on scientific information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forensic scientists working in 12 state or private laboratories participated in collaborative tests to improve the reliability of the presentation of DNA data at trial. These tests were motivated in response to the growing criticism of the power of DNA evidence. The experts' conclusions in the tests are presented and discussed in the context of the Bayesian approach to interpretation. The use of a Bayesian approach and subjective probabilities in trace evaluation permits, in an easy and intuitive manner, the integration into the decision procedure of any revision of the measure of uncertainty in the light of new information. Such an integration is especially useful with forensic evidence. Furthermore, we believe that this probabilistic model is a useful tool (a) to assist scientists in the assessment of the value of scientific evidence, (b) to help jurists in the interpretation of judicial facts and (c) to clarify the respective roles of scientists and of members of the court. Respondents to the survey were reluctant to apply this methodology in the assessment of DNA evidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the rise of criminal, civil and administrative judicial situations involving people lacking valid identity documents, age estimation of living persons has become an important operational procedure for numerous forensic and medicolegal services worldwide. The chronological age of a given person is generally estimated from the observed degree of maturity of some selected physical attributes by means of statistical methods. However, their application in the forensic framework suffers from some conceptual and practical drawbacks, as recently claimed in the specialised literature. The aim of this paper is therefore to offer an alternative solution for overcoming these limits, by reiterating the utility of a probabilistic Bayesian approach for age estimation. This approach allows one to deal in a transparent way with the uncertainty surrounding the age estimation process and to produce all the relevant information in the form of posterior probability distribution about the chronological age of the person under investigation. Furthermore, this probability distribution can also be used for evaluating in a coherent way the possibility that the examined individual is younger or older than a given legal age threshold having a particular legal interest. The main novelty introduced by this work is the development of a probabilistic graphical model, i.e. a Bayesian network, for dealing with the problem at hand. The use of this kind of probabilistic tool can significantly facilitate the application of the proposed methodology: examples are presented based on data related to the ossification status of the medial clavicular epiphysis. The reliability and the advantages of this probabilistic tool are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The level of information provided by ink evidence to the criminal and civil justice system is limited. The limitations arise from the weakness of the interpretative framework currently used, as proposed in the ASTM 1422-05 and 1789-04 on ink analysis. It is proposed to use the likelihood ratio from the Bayes theorem to interpret ink evidence. Unfortunately, when considering the analytical practices, as defined in the ASTM standards on ink analysis, it appears that current ink analytical practices do not allow for the level of reproducibility and accuracy required by a probabilistic framework. Such framework relies on the evaluation of the statistics of the ink characteristics using an ink reference database and the objective measurement of similarities between ink samples. A complete research programme was designed to (a) develop a standard methodology for analysing ink samples in a more reproducible way, (b) comparing automatically and objectively ink samples and (c) evaluate the proposed methodology in a forensic context. This report focuses on the first of the three stages. A calibration process, based on a standard dye ladder, is proposed to improve the reproducibility of ink analysis by HPTLC, when these inks are analysed at different times and/or by different examiners. The impact of this process on the variability between the repetitive analyses of ink samples in various conditions is studied. The results show significant improvements in the reproducibility of ink analysis compared to traditional calibration methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limited information is available regarding the methodology required to characterize hashish seizures for assessing the presence or the absence of a chemical link between two seizures. This casework report presents the methodology applied for assessing that two different police seizures were coming from the same block before this latter one was split. The chemical signature was extracted using GC-MS analysis and the implemented methodology consists in a study of intra- and inter-variability distributions based on the measurement of the chemical profiles similarity using a number of hashish seizures and the calculation of the Pearson correlation coefficient. Different statistical scenarios (i.e., a combination of data pretreatment techniques and selection of target compounds) were tested to find the most discriminating one. Seven compounds showing high discrimination capabilities were selected on which a specific statistical data pretreatment was applied. Based on the results, the statistical model built for comparing the hashish seizures leads to low error rates. Therefore, the implemented methodology is suitable for the chemical profiling of hashish seizures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sampling issues represent a topic of ongoing interest to the forensic science community essentially because of their crucial role in laboratory planning and working protocols. For this purpose, forensic literature described thorough (Bayesian) probabilistic sampling approaches. These are now widely implemented in practice. They allow, for instance, to obtain probability statements that parameters of interest (e.g., the proportion of a seizure of items that present particular features, such as an illegal substance) satisfy particular criteria (e.g., a threshold or an otherwise limiting value). Currently, there are many approaches that allow one to derive probability statements relating to a population proportion, but questions on how a forensic decision maker - typically a client of a forensic examination or a scientist acting on behalf of a client - ought actually to decide about a proportion or a sample size, remained largely unexplored to date. The research presented here intends to address methodology from decision theory that may help to cope usefully with the wide range of sampling issues typically encountered in forensic science applications. The procedures explored in this paper enable scientists to address a variety of concepts such as the (net) value of sample information, the (expected) value of sample information or the (expected) decision loss. All of these aspects directly relate to questions that are regularly encountered in casework. Besides probability theory and Bayesian inference, the proposed approach requires some additional elements from decision theory that may increase the efforts needed for practical implementation. In view of this challenge, the present paper will emphasise the merits of graphical modelling concepts, such as decision trees and Bayesian decision networks. These can support forensic scientists in applying the methodology in practice. How this may be achieved is illustrated with several examples. The graphical devices invoked here also serve the purpose of supporting the discussion of the similarities, differences and complementary aspects of existing Bayesian probabilistic sampling criteria and the decision-theoretic approach proposed throughout this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARYSpecies distribution models (SDMs) represent nowadays an essential tool in the research fields of ecology and conservation biology. By combining observations of species occurrence or abundance with information on the environmental characteristic of the observation sites, they can provide information on the ecology of species, predict their distributions across the landscape or extrapolate them to other spatial or time frames. The advent of SDMs, supported by geographic information systems (GIS), new developments in statistical models and constantly increasing computational capacities, has revolutionized the way ecologists can comprehend species distributions in their environment. SDMs have brought the tool that allows describing species realized niches across a multivariate environmental space and predict their spatial distribution. Predictions, in the form of probabilistic maps showing the potential distribution of the species, are an irreplaceable mean to inform every single unit of a territory about its biodiversity potential. SDMs and the corresponding spatial predictions can be used to plan conservation actions for particular species, to design field surveys, to assess the risks related to the spread of invasive species, to select reserve locations and design reserve networks, and ultimately, to forecast distributional changes according to scenarios of climate and/or land use change.By assessing the effect of several factors on model performance and on the accuracy of spatial predictions, this thesis aims at improving techniques and data available for distribution modelling and at providing the best possible information to conservation managers to support their decisions and action plans for the conservation of biodiversity in Switzerland and beyond. Several monitoring programs have been put in place from the national to the global scale, and different sources of data now exist and start to be available to researchers who want to model species distribution. However, because of the lack of means, data are often not gathered at an appropriate resolution, are sampled only over limited areas, are not spatially explicit or do not provide a sound biological information. A typical example of this is data on 'habitat' (sensu biota). Even though this is essential information for an effective conservation planning, it often has to be approximated from land use, the closest available information. Moreover, data are often not sampled according to an established sampling design, which can lead to biased samples and consequently to spurious modelling results. Understanding the sources of variability linked to the different phases of the modelling process and their importance is crucial in order to evaluate the final distribution maps that are to be used for conservation purposes.The research presented in this thesis was essentially conducted within the framework of the Landspot Project, a project supported by the Swiss National Science Foundation. The main goal of the project was to assess the possible contribution of pre-modelled 'habitat' units to model the distribution of animal species, in particular butterfly species, across Switzerland. While pursuing this goal, different aspects of data quality, sampling design and modelling process were addressed and improved, and implications for conservation discussed. The main 'habitat' units considered in this thesis are grassland and forest communities of natural and anthropogenic origin as defined in the typology of habitats for Switzerland. These communities are mainly defined at the phytosociological level of the alliance. For the time being, no comprehensive map of such communities is available at the national scale and at fine resolution. As a first step, it was therefore necessary to create distribution models and maps for these communities across Switzerland and thus to gather and collect the necessary data. In order to reach this first objective, several new developments were necessary such as the definition of expert models, the classification of the Swiss territory in environmental domains, the design of an environmentally stratified sampling of the target vegetation units across Switzerland, the development of a database integrating a decision-support system assisting in the classification of the relevés, and the downscaling of the land use/cover data from 100 m to 25 m resolution.The main contributions of this thesis to the discipline of species distribution modelling (SDM) are assembled in four main scientific papers. In the first, published in Journal of Riogeography different issues related to the modelling process itself are investigated. First is assessed the effect of five different stepwise selection methods on model performance, stability and parsimony, using data of the forest inventory of State of Vaud. In the same paper are also assessed: the effect of weighting absences to ensure a prevalence of 0.5 prior to model calibration; the effect of limiting absences beyond the environmental envelope defined by presences; four different methods for incorporating spatial autocorrelation; and finally, the effect of integrating predictor interactions. Results allowed to specifically enhance the GRASP tool (Generalized Regression Analysis and Spatial Predictions) that now incorporates new selection methods and the possibility of dealing with interactions among predictors as well as spatial autocorrelation. The contribution of different sources of remotely sensed information to species distribution models was also assessed. The second paper (to be submitted) explores the combined effects of sample size and data post-stratification on the accuracy of models using data on grassland distribution across Switzerland collected within the framework of the Landspot project and supplemented with other important vegetation databases. For the stratification of the data, different spatial frameworks were compared. In particular, environmental stratification by Swiss Environmental Domains was compared to geographical stratification either by biogeographic regions or political states (cantons). The third paper (to be submitted) assesses the contribution of pre- modelled vegetation communities to the modelling of fauna. It is a two-steps approach that combines the disciplines of community ecology and spatial ecology and integrates their corresponding concepts of habitat. First are modelled vegetation communities per se and then these 'habitat' units are used in order to model animal species habitat. A case study is presented with grassland communities and butterfly species. Different ways of integrating vegetation information in the models of butterfly distribution were also evaluated. Finally, a glimpse to climate change is given in the fourth paper, recently published in Ecological Modelling. This paper proposes a conceptual framework for analysing range shifts, namely a catalogue of the possible patterns of change in the distribution of a species along elevational or other environmental gradients and an improved quantitative methodology to identify and objectively describe these patterns. The methodology was developed using data from the Swiss national common breeding bird survey and the article presents results concerning the observed shifts in the elevational distribution of breeding birds in Switzerland.The overall objective of this thesis is to improve species distribution models as potential inputs for different conservation tools (e.g. red lists, ecological networks, risk assessment of the spread of invasive species, vulnerability assessment in the context of climate change). While no conservation issues or tools are directly tested in this thesis, the importance of the proposed improvements made in species distribution modelling is discussed in the context of the selection of reserve networks.RESUMELes modèles de distribution d'espèces (SDMs) représentent aujourd'hui un outil essentiel dans les domaines de recherche de l'écologie et de la biologie de la conservation. En combinant les observations de la présence des espèces ou de leur abondance avec des informations sur les caractéristiques environnementales des sites d'observation, ces modèles peuvent fournir des informations sur l'écologie des espèces, prédire leur distribution à travers le paysage ou l'extrapoler dans l'espace et le temps. Le déploiement des SDMs, soutenu par les systèmes d'information géographique (SIG), les nouveaux développements dans les modèles statistiques, ainsi que la constante augmentation des capacités de calcul, a révolutionné la façon dont les écologistes peuvent comprendre la distribution des espèces dans leur environnement. Les SDMs ont apporté l'outil qui permet de décrire la niche réalisée des espèces dans un espace environnemental multivarié et prédire leur distribution spatiale. Les prédictions, sous forme de carte probabilistes montrant la distribution potentielle de l'espèce, sont un moyen irremplaçable d'informer chaque unité du territoire de sa biodiversité potentielle. Les SDMs et les prédictions spatiales correspondantes peuvent être utilisés pour planifier des mesures de conservation pour des espèces particulières, pour concevoir des plans d'échantillonnage, pour évaluer les risques liés à la propagation d'espèces envahissantes, pour choisir l'emplacement de réserves et les mettre en réseau, et finalement, pour prévoir les changements de répartition en fonction de scénarios de changement climatique et/ou d'utilisation du sol. En évaluant l'effet de plusieurs facteurs sur la performance des modèles et sur la précision des prédictions spatiales, cette thèse vise à améliorer les techniques et les données disponibles pour la modélisation de la distribution des espèces et à fournir la meilleure information possible aux gestionnaires pour appuyer leurs décisions et leurs plans d'action pour la conservation de la biodiversité en Suisse et au-delà. Plusieurs programmes de surveillance ont été mis en place de l'échelle nationale à l'échelle globale, et différentes sources de données sont désormais disponibles pour les chercheurs qui veulent modéliser la distribution des espèces. Toutefois, en raison du manque de moyens, les données sont souvent collectées à une résolution inappropriée, sont échantillonnées sur des zones limitées, ne sont pas spatialement explicites ou ne fournissent pas une information écologique suffisante. Un exemple typique est fourni par les données sur 'l'habitat' (sensu biota). Même s'il s'agit d'une information essentielle pour des mesures de conservation efficaces, elle est souvent approximée par l'utilisation du sol, l'information qui s'en approche le plus. En outre, les données ne sont souvent pas échantillonnées selon un plan d'échantillonnage établi, ce qui biaise les échantillons et par conséquent les résultats de la modélisation. Comprendre les sources de variabilité liées aux différentes phases du processus de modélisation s'avère crucial afin d'évaluer l'utilisation des cartes de distribution prédites à des fins de conservation.La recherche présentée dans cette thèse a été essentiellement menée dans le cadre du projet Landspot, un projet soutenu par le Fond National Suisse pour la Recherche. L'objectif principal de ce projet était d'évaluer la contribution d'unités 'd'habitat' pré-modélisées pour modéliser la répartition des espèces animales, notamment de papillons, à travers la Suisse. Tout en poursuivant cet objectif, différents aspects touchant à la qualité des données, au plan d'échantillonnage et au processus de modélisation sont abordés et améliorés, et leurs implications pour la conservation des espèces discutées. Les principaux 'habitats' considérés dans cette thèse sont des communautés de prairie et de forêt d'origine naturelle et anthropique telles que définies dans la typologie des habitats de Suisse. Ces communautés sont principalement définies au niveau phytosociologique de l'alliance. Pour l'instant aucune carte de la distribution de ces communautés n'est disponible à l'échelle nationale et à résolution fine. Dans un premier temps, il a donc été nécessaire de créer des modèles de distribution de ces communautés à travers la Suisse et par conséquent de recueillir les données nécessaires. Afin d'atteindre ce premier objectif, plusieurs nouveaux développements ont été nécessaires, tels que la définition de modèles experts, la classification du territoire suisse en domaines environnementaux, la conception d'un échantillonnage environnementalement stratifié des unités de végétation cibles dans toute la Suisse, la création d'une base de données intégrant un système d'aide à la décision pour la classification des relevés, et le « downscaling » des données de couverture du sol de 100 m à 25 m de résolution. Les principales contributions de cette thèse à la discipline de la modélisation de la distribution d'espèces (SDM) sont rassemblées dans quatre articles scientifiques. Dans le premier article, publié dans le Journal of Biogeography, différentes questions liées au processus de modélisation sont étudiées en utilisant les données de l'inventaire forestier de l'Etat de Vaud. Tout d'abord sont évalués les effets de cinq méthodes de sélection pas-à-pas sur la performance, la stabilité et la parcimonie des modèles. Dans le même article sont également évalués: l'effet de la pondération des absences afin d'assurer une prévalence de 0.5 lors de la calibration du modèle; l'effet de limiter les absences au-delà de l'enveloppe définie par les présences; quatre méthodes différentes pour l'intégration de l'autocorrélation spatiale; et enfin, l'effet de l'intégration d'interactions entre facteurs. Les résultats présentés dans cet article ont permis d'améliorer l'outil GRASP qui intègre désonnais de nouvelles méthodes de sélection et la possibilité de traiter les interactions entre variables explicatives, ainsi que l'autocorrélation spatiale. La contribution de différentes sources de données issues de la télédétection a également été évaluée. Le deuxième article (en voie de soumission) explore les effets combinés de la taille de l'échantillon et de la post-stratification sur le la précision des modèles. Les données utilisées ici sont celles concernant la répartition des prairies de Suisse recueillies dans le cadre du projet Landspot et complétées par d'autres sources. Pour la stratification des données, différents cadres spatiaux ont été comparés. En particulier, la stratification environnementale par les domaines environnementaux de Suisse a été comparée à la stratification géographique par les régions biogéographiques ou par les cantons. Le troisième article (en voie de soumission) évalue la contribution de communautés végétales pré-modélisées à la modélisation de la faune. C'est une approche en deux étapes qui combine les disciplines de l'écologie des communautés et de l'écologie spatiale en intégrant leurs concepts de 'habitat' respectifs. Les communautés végétales sont modélisées d'abord, puis ces unités de 'habitat' sont utilisées pour modéliser les espèces animales. Une étude de cas est présentée avec des communautés prairiales et des espèces de papillons. Différentes façons d'intégrer l'information sur la végétation dans les modèles de répartition des papillons sont évaluées. Enfin, un clin d'oeil aux changements climatiques dans le dernier article, publié dans Ecological Modelling. Cet article propose un cadre conceptuel pour l'analyse des changements dans la distribution des espèces qui comprend notamment un catalogue des différentes formes possibles de changement le long d'un gradient d'élévation ou autre gradient environnemental, et une méthode quantitative améliorée pour identifier et décrire ces déplacements. Cette méthodologie a été développée en utilisant des données issues du monitoring des oiseaux nicheurs répandus et l'article présente les résultats concernant les déplacements observés dans la distribution altitudinale des oiseaux nicheurs en Suisse.L'objectif général de cette thèse est d'améliorer les modèles de distribution des espèces en tant que source d'information possible pour les différents outils de conservation (par exemple, listes rouges, réseaux écologiques, évaluation des risques de propagation d'espèces envahissantes, évaluation de la vulnérabilité des espèces dans le contexte de changement climatique). Bien que ces questions de conservation ne soient pas directement testées dans cette thèse, l'importance des améliorations proposées pour la modélisation de la distribution des espèces est discutée à la fin de ce travail dans le contexte de la sélection de réseaux de réserves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: For many therapeutic decisions in Crohn's disease (CD), high-grade evidence is lacking. To assist clinical decision-making, explicit panel-based appropriateness criteria were developed by an international, multidisciplinary expert panel. METHODS: 10 gastroenterologists, 3 surgeons and 2 general practitioners from 12 European countries assessed the appropriateness of therapy for CD using the RAND Appropriateness Method. Their assessment was based on the study of a recent literature review of the subject, combined with their own expert clinical judgment. Panelists rated clinical indications and treatment options using a 9-point scale (1 = extremely inappropriate; 9 = extremely appropriate). These scenarios were then discussed in detail at the panel meeting and re-rated. Median ratings and disagreement were used to aggregate ratings into three assessment categories: appropriate (A), uncertain (U) and inappropriate (I). RESULTS: 569 specific indications were rated, dealing with 9 clinical presentations: mild/moderate luminal CD (n = 104), severe CD (n = 126), steroid-dependent CD (n = 25), steroid-refractory CD (n = 37), fistulizing CD (n = 49), fibrostenotic CD (n = 35), maintenance of medical remission of CD (n = 84), maintenance of surgical remission (n = 78), drug safety in pregnancy (n = 24) and use of infliximab (n = 7). Overall, 146 indications (26%) were judged appropriate, 129 (23%) uncertain and 294 (52%) inappropriate. Frank disagreement was low (14% overall) with the greatest disagreement (54% of scenarios) being observed for treatment of steroid-refractory disease. CONCLUSIONS: Detailed explicit appropriateness criteria for the appropriate use of therapy for CD were developed for the first time by a European expert panel. Disease location, severity and previous treatments were the main factors taken into account. User-friendly access to EPACT criteria is available via an Internet site, www.epact.ch, allowing prospective evaluation and improvement of appropriateness of current CD therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to document the outcome of a global three-year long supply chain improvement initiative at a multi-national producer of branded sporting goods that is transforming from a holding structure to an integrated company. The case company is comprised of seven internationally well-known sport brands, which form a diverse set of independent sub-cases, on which the same supply chain metrics and change project approach was applied to improve supply chain performance. Design/methodology/approach - By using in-depth case study and statistical analysis the paper analyzes across the brands how supply chain complexity (SKU count), supply chain type (make or buy) and seasonality affect completeness and punctuality of deliveries, and inventory as the change project progresses. Findings - Results show that reduction in supply chain complexity improves delivery performance, but has no impact on inventory. Supply chain type has no impact on service level, but brands with in-house production are better in improving inventory than those with outsourced production. Non-seasonal business units improve service faster than seasonal ones, yet there is no impact on inventory. Research limitations/implications - The longitudinal data used for the analysis is biased with the general business trend, yet the rich data from different cases and three-years of data collection enables generalizations to a certain level. Practical implications - The in-depth case study serves as an example for other companies on how to initiate a supply chain improvement project across business units with tangible results. Originality/value - The seven sub-cases with their different characteristics on which the same improvement initiative was applied sets a unique ground for longitudinal analysis to study supply chain complexity, type and seasonality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The widespread use of digital imaging devices for surveillance (CCTV) and entertainment (e.g., mobile phones, compact cameras) has increased the number of images recorded and opportunities to consider the images as traces or documentation of criminal activity. The forensic science literature focuses almost exclusively on technical issues and evidence assessment [1]. Earlier steps in the investigation phase have been neglected and must be considered. This article is the first comprehensive description of a methodology to event reconstruction using images. This formal methodology was conceptualised from practical experiences and applied to different contexts and case studies to test and refine it. Based on this practical analysis, we propose a systematic approach that includes a preliminary analysis followed by four main steps. These steps form a sequence for which the results from each step rely on the previous step. However, the methodology is not linear, but it is a cyclic, iterative progression for obtaining knowledge about an event. The preliminary analysis is a pre-evaluation phase, wherein potential relevance of images is assessed. In the first step, images are detected and collected as pertinent trace material; the second step involves organising and assessing their quality and informative potential. The third step includes reconstruction using clues about space, time and actions. Finally, in the fourth step, the images are evaluated and selected as evidence. These steps are described and illustrated using practical examples. The paper outlines how images elicit information about persons, objects, space, time and actions throughout the investigation process to reconstruct an event step by step. We emphasise the hypothetico-deductive reasoning framework, which demonstrates the contribution of images to generating, refining or eliminating propositions or hypotheses. This methodology provides a sound basis for extending image use as evidence and, more generally, as clues in investigation and crime reconstruction processes.