106 resultados para Probabilistic interpretation
em Université de Lausanne, Switzerland
Resumo:
Continuing developments in science and technology mean that the amounts of information forensic scientists are able to provide for criminal investigations is ever increasing. The commensurate increase in complexity creates difficulties for scientists and lawyers with regard to evaluation and interpretation, notably with respect to issues of inference and decision. Probability theory, implemented through graphical methods, and specifically Bayesian networks, provides powerful methods to deal with this complexity. Extensions of these methods to elements of decision theory provide further support and assistance to the judicial system. Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science provides a unique and comprehensive introduction to the use of Bayesian decision networks for the evaluation and interpretation of scientific findings in forensic science, and for the support of decision-makers in their scientific and legal tasks. Includes self-contained introductions to probability and decision theory. Develops the characteristics of Bayesian networks, object-oriented Bayesian networks and their extension to decision models. Features implementation of the methodology with reference to commercial and academically available software. Presents standard networks and their extensions that can be easily implemented and that can assist in the reader's own analysis of real cases. Provides a technique for structuring problems and organizing data based on methods and principles of scientific reasoning. Contains a method for the construction of coherent and defensible arguments for the analysis and evaluation of scientific findings and for decisions based on them. Is written in a lucid style, suitable for forensic scientists and lawyers with minimal mathematical background. Includes a foreword by Ian Evett. The clear and accessible style of this second edition makes this book ideal for all forensic scientists, applied statisticians and graduate students wishing to evaluate forensic findings from the perspective of probability and decision analysis. It will also appeal to lawyers and other scientists and professionals interested in the evaluation and interpretation of forensic findings, including decision making based on scientific information.
Resumo:
Forensic scientists working in 12 state or private laboratories participated in collaborative tests to improve the reliability of the presentation of DNA data at trial. These tests were motivated in response to the growing criticism of the power of DNA evidence. The experts' conclusions in the tests are presented and discussed in the context of the Bayesian approach to interpretation. The use of a Bayesian approach and subjective probabilities in trace evaluation permits, in an easy and intuitive manner, the integration into the decision procedure of any revision of the measure of uncertainty in the light of new information. Such an integration is especially useful with forensic evidence. Furthermore, we believe that this probabilistic model is a useful tool (a) to assist scientists in the assessment of the value of scientific evidence, (b) to help jurists in the interpretation of judicial facts and (c) to clarify the respective roles of scientists and of members of the court. Respondents to the survey were reluctant to apply this methodology in the assessment of DNA evidence.
Resumo:
This paper reports on the purpose, design, methodology and target audience of E-learning courses in forensic interpretation offered by the authors since 2010, including practical experiences made throughout the implementation period of this project. This initiative was motivated by the fact that reporting results of forensic examinations in a logically correct and scientifically rigorous way is a daily challenge for any forensic practitioner. Indeed, interpretation of raw data and communication of findings in both written and oral statements are topics where knowledge and applied skills are needed. Although most forensic scientists hold educational records in traditional sciences, only few actually followed full courses that focussed on interpretation issues. Such courses should include foundational principles and methodology - including elements of forensic statistics - for the evaluation of forensic data in a way that is tailored to meet the needs of the criminal justice system. In order to help bridge this gap, the authors' initiative seeks to offer educational opportunities that allow practitioners to acquire knowledge and competence in the current approaches to the evaluation and interpretation of forensic findings. These cover, among other aspects, probabilistic reasoning (including Bayesian networks and other methods of forensic statistics, tools and software), case pre-assessment, skills in the oral and written communication of uncertainty, and the development of independence and self-confidence to solve practical inference problems. E-learning was chosen as a general format because it helps to form a trans-institutional online-community of practitioners from varying forensic disciplines and workfield experience such as reporting officers, (chief) scientists, forensic coordinators, but also lawyers who all can interact directly from their personal workplaces without consideration of distances, travel expenses or time schedules. In the authors' experience, the proposed learning initiative supports participants in developing their expertise and skills in forensic interpretation, but also offers an opportunity for the associated institutions and the forensic community to reinforce the development of a harmonized view with regard to interpretation across forensic disciplines, laboratories and judicial systems.
Resumo:
Both, Bayesian networks and probabilistic evaluation are gaining more and more widespread use within many professional branches, including forensic science. Notwithstanding, they constitute subtle topics with definitional details that require careful study. While many sophisticated developments of probabilistic approaches to evaluation of forensic findings may readily be found in published literature, there remains a gap with respect to writings that focus on foundational aspects and on how these may be acquired by interested scientists new to these topics. This paper takes this as a starting point to report on the learning about Bayesian networks for likelihood ratio based, probabilistic inference procedures in a class of master students in forensic science. The presentation uses an example that relies on a casework scenario drawn from published literature, involving a questioned signature. A complicating aspect of that case study - proposed to students in a teaching scenario - is due to the need of considering multiple competing propositions, which is an outset that may not readily be approached within a likelihood ratio based framework without drawing attention to some additional technical details. Using generic Bayesian networks fragments from existing literature on the topic, course participants were able to track the probabilistic underpinnings of the proposed scenario correctly both in terms of likelihood ratios and of posterior probabilities. In addition, further study of the example by students allowed them to derive an alternative Bayesian network structure with a computational output that is equivalent to existing probabilistic solutions. This practical experience underlines the potential of Bayesian networks to support and clarify foundational principles of probabilistic procedures for forensic evaluation.
Resumo:
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.
Resumo:
Due to the rise of criminal, civil and administrative judicial situations involving people lacking valid identity documents, age estimation of living persons has become an important operational procedure for numerous forensic and medicolegal services worldwide. The chronological age of a given person is generally estimated from the observed degree of maturity of some selected physical attributes by means of statistical methods. However, their application in the forensic framework suffers from some conceptual and practical drawbacks, as recently claimed in the specialised literature. The aim of this paper is therefore to offer an alternative solution for overcoming these limits, by reiterating the utility of a probabilistic Bayesian approach for age estimation. This approach allows one to deal in a transparent way with the uncertainty surrounding the age estimation process and to produce all the relevant information in the form of posterior probability distribution about the chronological age of the person under investigation. Furthermore, this probability distribution can also be used for evaluating in a coherent way the possibility that the examined individual is younger or older than a given legal age threshold having a particular legal interest. The main novelty introduced by this work is the development of a probabilistic graphical model, i.e. a Bayesian network, for dealing with the problem at hand. The use of this kind of probabilistic tool can significantly facilitate the application of the proposed methodology: examples are presented based on data related to the ossification status of the medial clavicular epiphysis. The reliability and the advantages of this probabilistic tool are presented and discussed.
Resumo:
The upper part of three deep seismic lines running across the Penninic Swiss Alps of Valais have been studied. Numerous reflectors illustrate the nappe structure of this internal part of the orogen. These reflectors, even at great depths (20-25 km), can be correlated with outcropping geological features and are most likely produced by lithological boundaries rather than by mylonites zones, which are hardly reflective in such an environment. Our interpretations, largely constrained by projections of the outcropping geology, have improved our knowledge of the deep structure of this segment of the Alpine belt, enhancing the importance of the backfolding and the crustal scale deformation phase which produced the Rawil-Valpelline depression and the Aar-Toce culmination. Furthermore we have here the possibility of correlating seismic patterns produced by ductile folds with the outcropping structures.
Resumo:
The level of information provided by ink evidence to the criminal and civil justice system is limited. The limitations arise from the weakness of the interpretative framework currently used, as proposed in the ASTM 1422-05 and 1789-04 on ink analysis. It is proposed to use the likelihood ratio from the Bayes theorem to interpret ink evidence. Unfortunately, when considering the analytical practices, as defined in the ASTM standards on ink analysis, it appears that current ink analytical practices do not allow for the level of reproducibility and accuracy required by a probabilistic framework. Such framework relies on the evaluation of the statistics of the ink characteristics using an ink reference database and the objective measurement of similarities between ink samples. A complete research programme was designed to (a) develop a standard methodology for analysing ink samples in a more reproducible way, (b) comparing automatically and objectively ink samples and (c) evaluate the proposed methodology in a forensic context. This report focuses on the first of the three stages. A calibration process, based on a standard dye ladder, is proposed to improve the reproducibility of ink analysis by HPTLC, when these inks are analysed at different times and/or by different examiners. The impact of this process on the variability between the repetitive analyses of ink samples in various conditions is studied. The results show significant improvements in the reproducibility of ink analysis compared to traditional calibration methods.
Resumo:
BACKGROUND: The mutation status of the BRAF and KRAS genes has been proposed as prognostic biomarker in colorectal cancer. Of them, only the BRAF V600E mutation has been validated independently as prognostic for overall survival and survival after relapse, while the prognostic value of KRAS mutation is still unclear. We investigated the prognostic value of BRAF and KRAS mutations in various contexts defined by stratifications of the patient population. METHODS: We retrospectively analyzed a cohort of patients with stage II and III colorectal cancer from the PETACC-3 clinical trial (N = 1,423), by assessing the prognostic value of the BRAF and KRAS mutations in subpopulations defined by all possible combinations of the following clinico-pathological variables: T stage, N stage, tumor site, tumor grade and microsatellite instability status. In each such subpopulation, the prognostic value was assessed by log rank test for three endpoints: overall survival, relapse-free survival, and survival after relapse. The significance level was set to 0.01 for Bonferroni-adjusted p-values, and a second threshold for a trend towards statistical significance was set at 0.05 for unadjusted p-values. The significance of the interactions was tested by Wald test, with significance level of 0.05. RESULTS: In stage II-III colorectal cancer, BRAF mutation was confirmed a marker of poor survival only in subpopulations involving microsatellite stable and left-sided tumors, with higher effects than in the whole population. There was no evidence for prognostic value in microsatellite instable or right-sided tumor groups. We found that BRAF was also prognostic for relapse-free survival in some subpopulations. We found no evidence that KRAS mutations had prognostic value, although a trend was observed in some stratifications. We also show evidence of heterogeneity in survival of patients with BRAF V600E mutation. CONCLUSIONS: The BRAF mutation represents an additional risk factor only in some subpopulations of colorectal cancers, in others having limited prognostic value. However, in the subpopulations where it is prognostic, it represents a marker of much higher risk than previously considered. KRAS mutation status does not seem to represent a strong prognostic variable.
Resumo:
Fecal calprotectin is a small protein released mainly by neutrophils. It is recognized as a reliable, easy and non-invasive biomarker of gastro-intestinal inflammation. Normal values vary with age, with higher cut-off values during the first year of life (<350 microg/g) than in children (<275 microg/g) or adults (<50 microg/g). Fecal calprotectin can be a useful tool in initial evaluation of recurrent abdominal pain, helping to distinguish between functional gastro-intestinal disorders, where it is normal, and inflammatory bowel disease (IBD). It is not a specific marker of IBD but is increased in other situations of gastro-intestinal inflammation. In patients with IBD, fecal calprotectin is used to monitor treatment response.