178 resultados para Premenstrual tension
em Université de Lausanne, Switzerland
Resumo:
We evaluated a new pulse oximeter designed to monitor beat-to-beat arterial oxygen saturation (SaO2) and compared the monitored SaO2 with arterial samples measured by co-oximetry. In 40 critically ill children (112 data sets) with a mean age of 3.9 years (range 1 day to 19 years), SaO2 ranged from 57% to 100%, and PaO2 from 27 to 128 mm Hg, heart rates from 85 to 210 beats per minute, hematocrit from 20% to 67%, and fetal hemoglobin levels from 1.3% to 60%; peripheral temperatures varied between 26.5 degrees and 36.5 degrees C. Linear correlation analysis revealed a good agreement between simultaneous pulse oximeter values and both directly measured SaO2 (r = 0.95) and that calculated from measured arterial PaO2 (r = 0.95). The device detected several otherwise unrecognized drops in SaO2 but failed to function in four patients with poor peripheral perfusion secondary to low cardiac output. Simultaneous measurements with a tcPO2 electrode showed a similarly good correlation with PaO22 (r = 0.91), but the differences between the two measurements were much wider (mean 7.1 +/- 10.3 mm Hg, range -14 to +49 mm Hg) than the differences between pulse oximeter SaO2 and measured SaO2 (1.5% +/- 3.5%, range -7.5% to -9%) and were not predictable. We conclude that pulse oximetry is a reliable and accurate noninvasive device for measuring saturation, which because of its rapid response time may be an important advance in monitoring changes in oxygenation and guiding oxygen therapy.
Resumo:
Des données récentes suggèrent que les gènes ABCB1 et CYP3A5 sont impliqués dans le contrôle de la tension artérielle chez l'homme. Les gènes ABCB1 et CYP3A5 sont bien connus pour interagir l'un avec l'autre dans le métabolisme et le transport de nombreux médicaments, mais on sait peu de choses sur leurs rôles dans les processus physiologiques endogènes chez l'homme. Si les gènes ABCB1 et CYP3A5 influencent la tension artérielle par leur action sur des substrats endogènes, comme l'aldostérone, cela pourrait avoir des conséquences importantes pour le traitement des sujets hypertendus ainsi que dans le domaine de la pharmacogénétique. Ces gènes semblent influencer la tension artérielle par l'intermédiaire du système rénine-angiotensin- aldostérone via la réabsorption tubulaire rénale de sodium. Ces résultats soulignent l'importance de tenir compte des interactions gène-gène et le rôle clé de la consommation en sel comme modificateur d'effet en génétique de l'hypertension. Si ces résultats sont confirmés dans plusieurs études indépendantes, cela ouvre la voie vers un nouveau mécanisme de contrôle de la tension artérielle chez l'homme.
Resumo:
INTRODUCTION: We set out to determine if insertion of a retropubic tension-free vaginal tape (TVT) sling at the time of pelvic organ prolapse surgery improves continence outcomes in women with pre-operative occult stress incontinence (OSI) or asymptomatic urodynamic stress incontinence (USI). METHODS: We conducted a randomised controlled study of prolapse surgery with or without a TVT midurethral sling. The pre- and post-operative assessment at 6 months included history, physical examination and urodynamic testing. Quality of life (QOL) and treatment success was assessed with the UDI-6 SF, IIQ-7 SF and a numerical success score. The primary outcome was symptomatic stress urinary incontinence (SUI) requiring continence surgery (TVT) at 6 months. Long-term follow-up continued to a minimum of 24 months. Secondary outcomes were quality of life parameters. RESULTS: Eighty women received prolapse surgery alone (n = 43) or prolapse surgery with concurrent TVT (n = 37). Six months following prolapse surgery 3 out of 43 (7 %) patients in the no TVT group requested sling surgery compared with 0 out of 37 (0 %) in the TVT group (ARR 7 % [95 %CI: 3 to 19 %], p = 0.11). After 24 months there was one further participant in the no TVT group who received a TVT for treatment of SUI compared with none in the TVT group (4 out of 43, 9.3 % versus 0 out of 37; ARR 9.3 % [95 %CI: -1 to 22 %], p = 0.06). Both groups showed improvement in QOL difference scores for within-group analysis, without difference between groups. CONCLUSION: These results support a policy that routine insertion of a sling in women with OSI at the time of prolapse repair is questionable and should be subject to shared decision-making between clinician and patient.
Resumo:
Whereas during the last few years handling of the transcutaneous PO2 (tcPO2) and PCO2 (tcPCO2) sensor has been simplified, the high electrode temperature and the short application time remain major drawbacks. In order to determine whether the application of a topical metabolic inhibitor allows reliable measurement at a sensor temperature of 42 degrees C for a period of up to 12 h, we performed a prospective, open, nonrandomized study in a sequential sample of 20 critically ill neonates. A total of 120 comparisons (six repeated measurements per patient) between arterial and transcutaneous values were obtained. Transcutaneous values were measured with a control sensor at 44 degrees C (conventional contact medium, average application time 3 h) and a test sensor at 42 degrees C (Eugenol solution, average application time 8 h). Comparison of tcPO2 and PaO2 at 42 degrees C (Eugenol solution) showed a mean difference of +0.16 kPa (range +1.60 to -2.00 kPa), limits of agreement +1.88 and -1.56 kPa. Comparison of tcPO2 and PaO2 at 44 degrees C (control sensor) revealed a mean difference of +0.02 kPa (range +2.60 to -1.90 kPa), limits of agreement +2.12 and -2.08 kPa. Comparison of tcPCO2 and PaCO2 at 42 degrees C (Eugenol solution) showed a mean difference of +0.91 (range +2.30 to +0.10 kPa), limits of agreement +2.24 and -0.42 kPa. Comparison of tcPCO2 and PaCO2 at 44 degrees C (control sensor) revealed a mean difference of +0.63 kPa (range 1.50 to -0.30 kPa), limits of agreement +1.73 and -0.47 kPa. CONCLUSION: Our results show that the use of an Eugenol solution allows reliable measurement of tcPO2 at a heating temperature of 42 degrees C; the application time can be prolongued up to a maximum of 12 h without aggravating the skin lesions. The performance of the tcPCO2 monitor was slightly worse at 42 degrees C than at 44 degrees C suggesting that for the Eugenol solution the metabolic offset should be corrected.
Resumo:
In 58 newborn infants a new iridium oxide sensor was evaluated for transcutaneous carbon dioxide (tcPCO2) monitoring at 42 degrees C with a prolonged fixation time of 24 hours. The correlation of tcPCO2 (y; mm Hg) v PaCO2 (x; mm Hg) for 586 paired values was: y = 4.6 + 1.45x; r = .89; syx = 6.1 mm Hg. The correlation was not influenced by the duration of fixation. The transcutaneous sensor detected hypocapnia (PaCO2 less than 35 mm Hg) in 74% and hypercapnia (PCO2 greater than 45 mm Hg) in 74% of all cases. After 24 hours, calibration shifts were less than 4 mm Hg in 90% of the measuring periods. In 86% of the infants, no skin changes were observed; in 12% of infants, there were transitional skin erythemas and in 2% a blister which disappeared without scarring. In newborn infants with normal BPs, continuous tcPCO2 monitoring at 42 degrees C can be extended for as many as 24 hours without loss of reliability or increased risk for skin burns.
Resumo:
IMPLICATIONS: A new combined ear sensor was tested for accuracy in 20 critically ill children. It provides noninvasive and continuous monitoring of arterial oxygen saturation, arterial carbon dioxide tension, and pulse rate. The sensor proved to be clinically accurate in the tested range.
Resumo:
We evaluated a new combined sensor for monitoring transcutaneous carbon dioxide tension (PtcCO2) and oxygen tension (PtcO2) in 20 critically ill newborn infants. Arterial oxygen tension (PaO2) ranged from 16 to 126 torr and arterial carbon dioxide tension (PaCO2) from 14 to 72 torr. Linear correlation analysis (100 paired values) of PtcO2 versus PaO2 showed an r value of 0.75 with a regression equation of PtcO2 = 8.59 + 0.905 (PaO2), while PtcCO2 versus PaCO2 revealed a correlation coefficient of r = 0.89 with an equation of PtcCO2 = 2.53 + 1.06 (PaCO2). The bias between PaO2 and PtcO2 was -2.8 with a precision of +/- 16.0 torr (range, -87 to +48 torr). The bias between PaCO2 and PtcCO2 was -5.1 with a precision of +/- 7.3 torr (range, -34 to +8 torr). The transcutaneous sensor detected 83% of hypoxia (PaO2 less than 45 torr), 75% of hyperoxia (PaO2 greater than 90 torr), 45% of hypocapnia (PaCO2 less than 35 torr), and 96% of hypercapnia (PaCO2 greater than 45 torr). We conclude that the reliability of the combined transcutaneous PO2 and PCO2 monitor in sick neonates is good for detecting hypercapnia, fair for hypoxia and hyperoxia, but poor for hypocapnia. It is an improvement in that it spares available skin surface and requires less handling, but it appears to be slightly less accurate than the single electrodes.
Tension-band wiring of olecranon fractures - Biomechanical analysis of different fixation techniques
Resumo:
Tension-band wiring is a recognised standard treatment for fixation of olecranon fractures. The classical operation technique is well known and widespread among the orthopaedic surgeons. Nevertheless complications like K-wire migration or skin perforation and difficult technical as well as anatomical prerequisites require better-adapted operation fixation methods. In older female patients a cut through of the Kirschner wires with concomitant secondary displacement was observed. We intent to develop a new, better adapted operation technique for olecranon fractures in the old patients, in order to decrease complications and follow-up procedures. In this study we compare two different K-wire positions: 10 models of the classical AO tension-banding to 10 models with adapted K-wire insertion. In this group the K-wire passes from the tip of the olecranon to the posterior cortical of the distal fragment of the ulna. We tested maximal failure load, maximal opening angle as well as maximal work to achieve maximal force. In either technique we were able to determine different variables: a maximal failure load of more than 600N (p = 0.94) for both fixation methods and a maximal opening angle for both techniques of about 10° (p = 0.86). To achieve the maximal force our modified technique required a slightly increased work (p = 0.16). In this study no statistical significant differences between the two fixation techniques was shown. This leads to the conclusion that the modified version is comparable to the classical operation technique considering the stability, but due to the adaption of the angle in the modified procedure, less lesions of neurovascular structures on the volar side can be expected. To support our findings cadaver studies are needed for further investigations.
Resumo:
The monocarboxylate transporter MCT4 is a high capacity carrier important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is predominantly expressed by astrocytes. Surprisingly, MCT4 expression in cultured astrocytes is low, suggesting that a physiological characteristic, not met in culture conditions, is necessary. Here we demonstrate that reducing oxygen concentration from 21% to either 1 or 0% restored in a concentration-dependent manner the expression of MCT4 at the mRNA and protein levels in cultured astrocytes. This effect was specific for MCT4 since the expression of MCT1, the other astrocytic monocarboxylate transporter present in vitro, was not altered in such conditions. MCT4 expression was shown to be controlled by the transcription factor hypoxia-inducible factor-1α (HIF-1α) since under low oxygen levels, transfecting astrocyte cultures with a siRNA targeting HIF-1α largely prevented MCT4 induction. Moreover, the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG) induced MCT4 expression in astrocytes cultured in presence of 21% oxygen. In parallel, glycolytic activity was enhanced by exposure to 1% oxygen as demonstrated by the increased lactate release, an effect dependent on MCT4 expression. Finally, MCT4 expression was found to be necessary for astrocyte survival when exposed for a prolonged period to 1% oxygen. These data suggest that a major determinant of astrocyte MCT4 expression in vivo is likely the oxygen tension. This could be relevant in areas of high neuronal activity and oxygen consumption, favouring astrocytic lactate supply to neurons. Moreover, it could also play an important role for neuronal recovery after an ischemic episode.