3 resultados para Predictive model
em Université de Lausanne, Switzerland
Resumo:
Species distribution models (SDMs) are increasingly used to predict environmentally induced range shifts of habitats of plant and animal species. Consequently SDMs are valuable tools for scientifically based conservation decisions. The aims of this paper are (1) to identify important drivers of butterfly species persistence or extinction, and (2) to analyse the responses of endangered butterfly species of dry grasslands and wetlands to likely future landscape changes in Switzerland. Future land use was represented by four scenarios describing: (1) ongoing land use changes as observed at the end of the last century; (2) a liberalisation of the agricultural markets; (3) a slightly lowered agricultural production; and (4) a strongly lowered agricultural production. Two model approaches have been applied. The first (logistic regression with principal components) explains what environmental variables have significant impact on species presence (and absence). The second (predictive SDM) is used to project species distribution under current and likely future land uses. The results of the explanatory analyses reveal that four principal components related to urbanisation, abandonment of open land and intensive agricultural practices as well as two climate parameters are primary drivers of species occurrence (decline). The scenario analyses show that lowered agricultural production is likely to favour dry grassland species due to an increase of non-intensively used land, open canopy forests, and overgrown areas. In the liberalisation scenario dry grassland species show a decrease in abundance due to a strong increase of forested patches. Wetland butterfly species would decrease under all four scenarios as their habitats become overgrown
Resumo:
Neuroblastoma (NB) is a neural crest-derived childhood tumor characterized by a remarkable phenotypic diversity, ranging from spontaneous regression to fatal metastatic disease. Although the cancer stem cell (CSC) model provides a trail to characterize the cells responsible for tumor onset, the NB tumor-initiating cell (TIC) has not been identified. In this study, the relevance of the CSC model in NB was investigated by taking advantage of typical functional stem cell characteristics. A predictive association was established between self-renewal, as assessed by serial sphere formation, and clinical aggressiveness in primary tumors. Moreover, cell subsets gradually selected during serial sphere culture harbored increased in vivo tumorigenicity, only highlighted in an orthotopic microenvironment. A microarray time course analysis of serial spheres passages from metastatic cells allowed us to specifically "profile" the NB stem cell-like phenotype and to identify CD133, ABC transporter, and WNT and NOTCH genes as spheres markers. On the basis of combined sphere markers expression, at least two distinct tumorigenic cell subpopulations were identified, also shown to preexist in primary NB. However, sphere markers-mediated cell sorting of parental tumor failed to recapitulate the TIC phenotype in the orthotopic model, highlighting the complexity of the CSC model. Our data support the NB stem-like cells as a dynamic and heterogeneous cell population strongly dependent on microenvironmental signals and add novel candidate genes as potential therapeutic targets in the control of high-risk NB.
Resumo:
The Early Smoking Experience (ESE) questionnaire is the most widely used questionnaire to assess initial subjective experiences of cigarette smoking. However, its factor structure is not clearly defined and can be perceived from two main standpoints: valence, or positive and negative experiences, and sensitivity to nicotine. This article explores the ESE's factor structure and determines which standpoint was more relevant. It compares two groups of young Swiss men (German- and French-speaking). We examined baseline data on 3,368 tobacco users from a representative sample in the ongoing Cohort Study on Substance Use Risk Factors (C-SURF). ESE, continued tobacco use, weekly smoking and nicotine dependence were assessed. Exploratory structural equation modeling (ESEM) and structural equation modeling (SEM) were performed. ESEM clearly distinguished positive experiences from negative experiences, but negative experiences were divided in experiences related to dizziness and experiences related to irritations. SEM underlined the reinforcing effects of positive experiences, but also of experiences related to dizziness on nicotine dependence and weekly smoking. The best ESE structure for predictive accuracy of experiences on smoking behavior was a compromise between the valence and sensitivity standpoints, which showed clinical relevance.