156 resultados para Predicted Distribution Data

em Université de Lausanne, Switzerland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Species range shifts in response to climate and land use change are commonly forecasted with species distribution models based on species occurrence or abundance data. Although appealing, these models ignore the genetic structure of species, and the fact that different populations might respond in different ways because of adaptation to their environment. Here, we introduced ancestry distribution models, that is, statistical models of the spatial distribution of ancestry proportions, for forecasting intra-specific changes based on genetic admixture instead of species occurrence data. Using multi-locus genotypes and extensive geographic coverage of distribution data across the European Alps, we applied this approach to 20 alpine plant species considering a global increase in temperature from 0.25 to 4 °C. We forecasted the magnitudes of displacement of contact zones between plant populations potentially adapted to warmer environments and other populations. While a global trend of movement in a north-east direction was predicted, the magnitude of displacement was species-specific. For a temperature increase of 2 °C, contact zones were predicted to move by 92 km on average (minimum of 5 km, maximum of 212 km) and by 188 km for an increase of 4 °C (minimum of 11 km, maximum of 393 km). Intra-specific turnover-measuring the extent of change in global population genetic structure-was generally found to be moderate for 2 °C of temperature warming. For 4 °C of warming, however, the models indicated substantial intra-specific turnover for ten species. These results illustrate that, in spite of unavoidable simplifications, ancestry distribution models open new perspectives to forecast population genetic changes within species and complement more traditional distribution-based approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Identifying the geographic distribution of populations is a basic, yet crucial step in many fundamental and applied ecological projects, as it provides key information on which many subsequent analyses depend. However, this task is often costly and time consuming, especially where rare species are concerned and where most sampling designs generally prove inefficient. At the same time, rare species are those for which distribution data are most needed for their conservation to be effective. To enhance fieldwork sampling, model-based sampling (MBS) uses predictions from species distribution models: when looking for the species in areas of high habitat suitability, chances should be higher to find them. We thoroughly tested the efficiency of MBS by conducting an important survey in the Swiss Alps, assessing the detection rate of three rare and five common plant species. For each species, habitat suitability maps were produced following an ensemble modeling framework combining two spatial resolutions and two modeling techniques. We tested the efficiency of MBS and the accuracy of our models by sampling 240 sites in the field (30 sitesx8 species). Across all species, the MBS approach proved to be effective. In particular, the MBS design strictly led to the discovery of six sites of presence of one rare plant, increasing chances to find this species from 0 to 50%. For common species, MBS doubled the new population discovery rates as compared to random sampling. Habitat suitability maps coming from the combination of four individual modeling methods predicted well the species' distribution and more accurately than the individual models. As a conclusion, using MBS for fieldwork could efficiently help in increasing our knowledge of rare species distribution. More generally, we recommend using habitat suitability models to support conservation plans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The need to contextualise wastewater-based figures about illicit drug consumption by comparing them with other indicators has been stressed by numerous studies. The objective of the present study was to further investigate the possibility of combining wastewater data to conventional statistics to assess the reliability of the former method and obtain a more balanced picture of illicit drug consumption in the investigated area. METHODS: Wastewater samples were collected between October 2013 and July 2014 in the metropolitan area of Lausanne (226,000 inhabitants), Switzerland. Methadone, its metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), the exclusive metabolite of heroin, 6-monoacetylmorphine (6-MAM), and morphine loads were used to estimate the amounts of methadone and heroin consumed. RESULTS: Methadone consumption estimated from EDDP was in agreement with the expectations. Heroin estimates based on 6-MAM loads were inconsistent. Estimates obtained from morphine loads, combined to prescription/sales data, were in agreement with figures derived from syringe distribution data and general population surveys. CONCLUSIONS: The results obtained for methadone allowed assessing the reliability of the selected sampling strategy, supporting its ability to capture the consumption of a small cohort (i.e., 743 patients). Using morphine as marker, in combination with prescription/sales data, estimates in accordance with other indicators about heroin use were obtained. Combining different sources of data allowed strengthening the results and suggested that the different indicators (i.e., administration route, average dosage and number of consumers) contribute to depict a realistic representation of the phenomenon in the investigated area. Heroin consumption was estimated to approximately 13gday(-1) (118gday(-1) at street level).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Western European landscapes have drastically changed since the 1950s, with agricultural intensifications and the spread of urban settlements considered the most important drivers of this land-use/land-cover change. Losses of habitat for fauna and flora have been a direct consequence of this development. In the present study, we relate butterfly occurrence to land-use/land-cover changes over five decades between 1951 and 2000. The study area covers the entire Swiss territory. The 10 explanatory variables originate from agricultural statistics and censuses. Both state as well as rate was used as explanatory variables. Species distribution data were obtained from natural history collections. We selected eight butterfly species: four species occur on wetlands and four occur on dry grasslands. We used cluster analysis to track land-use/land-cover changes and to group communes based on similar trajectories of change. Generalized linear models were applied to identify factors that were significantly correlated with the persistence or disappearance of butterfly species. Results showed that decreasing agricultural areas and densities of farms with more than 10 ha of cultivated land are significantly related with wetland species decline, and increasing densities of livestock seem to have favored disappearance of dry grassland species. Moreover, we show that species declines are not only dependent on land-use/land-cover states but also on the rates of change; that is, the higher the transformation rate from small to large farms, the higher the loss of dry grassland species. We suggest that more attention should be paid to the rates of landscape change as feasible drivers of species change and derive some management suggestions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim  We test for the congruence between allele-based range boundaries (break zones) in silicicolous alpine plants and species-based break zones in the silicicolous flora of the European Alps. We also ask whether such break zones coincide with areas of large elevational variation.Location  The European Alps.Methods  On a regular grid laid across the entire Alps, we determined areas of allele- and species-based break zones using respective clustering algorithms, identifying discontinuities in cluster distributions (breaks), and quantifying integrated break densities (break zones). Discontinuities were identified based on the intra-specific genetic variation of 12 species and on the floristic distribution data from 239 species, respectively. Coincidence between the two types of break zones was tested using Spearman's correlation. Break zone densities were also regressed on topographical complexity to test for the effect of elevational variation.Results  We found that two main break zones in the distribution of alleles and species were significantly correlated. Furthermore, we show that these break zones are in topographically complex regions, characterized by massive elevational ranges owing to high mountains and deep glacial valleys. We detected a third break zone in the distribution of species in the eastern Alps, which is not correlated with topographic complexity, and which is also not evident from allelic distribution patterns. Species with the potential for long-distance dispersal tended to show larger distribution ranges than short-distance dispersers.Main conclusions  We suggest that the history of Pleistocene glaciations is the main driver of the congruence between allele-based and species-based distribution patterns, because occurrences of both species and alleles were subject to the same processes (such as extinction, migration and drift) that shaped the distributions of species and genetic lineages. Large elevational ranges have had a profound effect as a dispersal barrier for alleles during post-glacial immigration. Because plant species, unlike alleles, cannot spread via pollen but only via seed, and thus disperse less effectively, we conclude that species break zones are maintained over longer time spans and reflect more ancient patterns than allele break zones.Conny Thiel-Egenter and Nadir Alvarez contributed equally to this paper and are considered joint first authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary Landscapes are continuously changing. Natural forces of change such as heavy rainfall and fires can exert lasting influences on their physical form. However, changes related to human activities have often shaped landscapes more distinctly. In Western Europe, especially modern agricultural practices and the expanse of overbuilt land have left their marks in the landscapes since the middle of the 20th century. In the recent years men realised that mare and more changes that were formerly attributed to natural forces might indirectly be the result of their own action. Perhaps the most striking landscape change indirectly driven by human activity we can witness in these days is the large withdrawal of Alpine glaciers. Together with the landscapes also habitats of animal and plant species have undergone vast and sometimes rapid changes that have been hold responsible for the ongoing loss of biodiversity. Thereby, still little knowledge is available about probable effects of the rate of landscape change on species persistence and disappearance. Therefore, the development and speed of land use/land cover in the Swiss communes between the 1950s and 1990s were reconstructed using 10 parameters from agriculture and housing censuses, and were further correlated with changes in butterfly species occurrences. Cluster analyses were used to detect spatial patterns of change on broad spatial scales. Thereby, clusters of communes showing similar changes or transformation rates were identified for single decades and put into a temporally dynamic sequence. The obtained picture on the changes showed a prevalent replacement of non-intensive agriculture by intensive practices, a strong spreading of urban communes around city centres, and transitions towards larger farm sizes in the mountainous areas. Increasing transformation rates toward more intensive agricultural managements were especially found until the 1970s, whereas afterwards the trends were commonly negative. However, transformation rates representing the development of residential buildings showed positive courses at any time. The analyses concerning the butterfly species showed that grassland species reacted sensitively to the density of livestock in the communes. This might indicate the augmented use of dry grasslands as cattle pastures that show altered plant species compositions. Furthermore, these species also decreased in communes where farms with an agricultural area >5ha have disappeared. The species of the wetland habitats were favoured in communes with smaller fractions of agricultural areas and lower densities of large farms (>10ha) but did not show any correlation to transformation rates. It was concluded from these analyses that transformation rates might influence species disappearance to a certain extent but that states of the environmental predictors might generally outweigh the importance of the corresponding rates. Information on the current distribution of species is evident for nature conservation. Planning authorities that define priority areas for species protection or examine and authorise construction projects need to know about the spatial distribution of species. Hence, models that simulate the potential spatial distribution of species have become important decision tools. The underlying statistical analyses such as the widely used generalised linear models (GLM) often rely on binary species presence-absence data. However, often only species presence data have been colleted, especially for vagrant, rare or cryptic species such as butterflies or reptiles. Modellers have thus introduced randomly selected absence data to design distribution models. Yet, selecting false absence data might bias the model results. Therefore, we investigated several strategies to select more reliable absence data to model the distribution of butterfly species based on historical distribution data. The results showed that better models were obtained when historical data from longer time periods were considered. Furthermore, model performance was additionally increased when long-term data of species that show similar habitat requirements as the modelled species were used. This successful methodological approach was further applied to assess consequences of future landscape changes on the occurrence of butterfly species inhabiting dry grasslands or wetlands. These habitat types have been subjected to strong deterioration in the recent decades, what makes their protection a future mission. Four spatially explicit scenarios that described (i) ongoing land use changes as observed between 1985 and 1997, (ii) liberalised agricultural markets, and (iii) slightly and (iv) strongly lowered agricultural production provided probable directions of landscape change. Current species-environment relationships were derived from a statistical model and used to predict future occurrence probabilities in six major biogeographical regions in Switzerland, comprising the Jura Mountains, the Plateau, the Northern and Southern Alps, as well as the Western and Eastern Central Alps. The main results were that dry grasslands species profited from lowered agricultural production, whereas overgrowth of open areas in the liberalisation scenario might impair species occurrence. The wetland species mostly responded with decreases in their occurrence probabilities in the scenarios, due to a loss of their preferred habitat. Further analyses about factors currently influencing species occurrences confirmed anthropogenic causes such as urbanisation, abandonment of open land, and agricultural intensification. Hence, landscape planning should pay more attention to these forces in areas currently inhabited by these butterfly species to enable sustainable species persistence. In this thesis historical data were intensively used to reconstruct past developments and to make them useful for current investigations. Yet, the availability of historical data and the analyses on broader spatial scales has often limited the explanatory power of the conducted analyses. Meaningful descriptors of former habitat characteristics and abundant species distribution data are generally sparse, especially for fine scale analyses. However, this situation can be ameliorated by broadening the extent of the study site and the used grain size, as was done in this thesis by considering the whole of Switzerland with its communes. Nevertheless, current monitoring projects and data recording techniques are promising data sources that might allow more detailed analyses about effects of long-term species reactions on landscape changes in the near future. This work, however, also showed the value of historical species distribution data as for example their potential to locate still unknown species occurrences. The results might therefore contribute to further research activities that investigate current and future species distributions considering the immense richness of historical distribution data. Résumé Les paysages changent continuellement. Des farces naturelles comme des pluies violentes ou des feux peuvent avoir une influence durable sur la forme du paysage. Cependant, les changements attribués aux activités humaines ont souvent modelé les paysages plus profondément. Depuis les années 1950 surtout, les pratiques agricoles modernes ou l'expansion des surfaces d'habitat et d'infrastructure ont caractérisé le développement du paysage en Europe de l'Ouest. Ces dernières années, l'homme a commencé à réaliser que beaucoup de changements «naturels » pourraient indirectement résulter de ses propres activités. Le changement de paysage le plus apparent dont nous sommes témoins de nos jours est probablement l'immense retraite des glaciers alpins. Avec les paysages, les habitats des animaux et des plantes ont aussi été exposés à des changements vastes et quelquefois rapides, tenus pour coresponsable de la continuelle diminution de la biodiversité. Cependant, nous savons peu des effets probables de la rapidité des changements du paysage sur la persistance et la disparition des espèces. Le développement et la rapidité du changement de l'utilisation et de la couverture du sol dans les communes suisses entre les années 50 et 90 ont donc été reconstruits au moyen de 10 variables issues des recensements agricoles et résidentiels et ont été corrélés avec des changements de présence des papillons diurnes. Des analyses de groupes (Cluster analyses) ont été utilisées pour détecter des arrangements spatiaux de changements à l'échelle de la Suisse. Des communes avec des changements ou rapidités comparables ont été délimitées pour des décennies séparées et ont été placées en séquence temporelle, en rendrent une certaine dynamique du changement. Les résultats ont montré un remplacement répandu d'une agriculture extensive des pratiques intensives, une forte expansion des faubourgs urbains autour des grandes cités et des transitions vers de plus grandes surfaces d'exploitation dans les Alpes. Dans le cas des exploitations agricoles, des taux de changement croissants ont été observés jusqu'aux années 70, alors que la tendance a généralement été inversée dans les années suivantes. Par contre, la vitesse de construction des nouvelles maisons a montré des courbes positives pendant les 50 années. Les analyses sur la réaction des papillons diurnes ont montré que les espèces des prairies sèches supportaient une grande densité de bétail. Il est possible que dans ces communes beaucoup des prairies sèches aient été fertilisées et utilisées comme pâturages, qui ont une autre composition floristique. De plus, les espèces ont diminué dans les communes caractérisées par une rapide perte des fermes avec une surface cultivable supérieure à 5 ha. Les espèces des marais ont été favorisées dans des communes avec peu de surface cultivable et peu de grandes fermes, mais n'ont pas réagi aux taux de changement. Il en a donc été conclu que la rapidité des changements pourrait expliquer les disparitions d'espèces dans certains cas, mais que les variables prédictives qui expriment des états pourraient être des descripteurs plus importants. Des informations sur la distribution récente des espèces sont importantes par rapport aux mesures pour la conservation de la nature. Pour des autorités occupées à définir des zones de protection prioritaires ou à autoriser des projets de construction, ces informations sont indispensables. Les modèles de distribution spatiale d'espèces sont donc devenus des moyens de décision importants. Les méthodes statistiques courantes comme les modèles linéaires généralisés (GLM) demandent des données de présence et d'absence des espèces. Cependant, souvent seules les données de présence sont disponibles, surtout pour les animaux migrants, rares ou cryptiques comme des papillons ou des reptiles. C'est pourquoi certains modélisateurs ont choisi des absences au hasard, avec le risque d'influencer le résultat en choisissant des fausses absences. Nous avons établi plusieurs stratégies, basées sur des données de distribution historique des papillons diurnes, pour sélectionner des absences plus fiables. Les résultats ont démontré que de meilleurs modèles pouvaient être obtenus lorsque les données proviennent des périodes de temps plus longues. En plus, la performance des modèles a pu être augmentée en considérant des données de distribution à long terme d'espèces qui occupent des habitats similaires à ceux de l'espèce cible. Vu le succès de cette stratégie, elle a été utilisée pour évaluer les effets potentiels des changements de paysage futurs sur la distribution des papillons des prairies sèches et marais, deux habitats qui ont souffert de graves détériorations. Quatre scénarios spatialement explicites, décrivant (i) l'extrapolation des changements de l'utilisation de sol tels qu'observés entre 1985 et 1997, (ii) la libéralisation des marchés agricoles, et une production agricole (iii) légèrement amoindrie et (iv) fortement diminuée, ont été utilisés pour générer des directions de changement probables. Les relations actuelles entre la distribution des espèces et l'environnement ont été déterminées par le biais des modèles statistiques et ont été utilisées pour calculer des probabilités de présence selon les scénarios dans six régions biogéographiques majeures de la Suisse, comportant le Jura, le Plateau, les Alpes du Nord, du Sud, centrales orientales et centrales occidentales. Les résultats principaux ont montré que les espèces des prairies sèches pourraient profiter d'une diminution de la production agricole, mais qu'elles pourraient aussi disparaître à cause de l'embroussaillement des terres ouvertes dû à la libéralisation des marchés agricoles. La probabilité de présence des espèces de marais a décrû à cause d'une perte générale des habitats favorables. De plus, les analyses ont confirmé que des causes humaines comme l'urbanisation, l'abandon des terres ouvertes et l'intensification de l'agriculture affectent actuellement ces espèces. Ainsi ces forces devraient être mieux prises en compte lors de planifications paysagères, pour que ces papillons diurnes puissent survivre dans leurs habitats actuels. Dans ce travail de thèse, des données historiques ont été intensivement utilisées pour reconstruire des développements anciens et pour les rendre utiles à des recherches contemporaines. Cependant, la disponibilité des données historiques et les analyses à grande échelle ont souvent limité le pouvoir explicatif des analyses. Des descripteurs pertinents pour caractériser les habitats anciens et des données suffisantes sur la distribution des espèces sont généralement rares, spécialement pour des analyses à des échelles fores. Cette situation peut être améliorée en augmentant l'étendue du site d'étude et la résolution, comme il a été fait dans cette thèse en considérant toute la Suisse avec ses communes. Cependant, les récents projets de surveillance et les techniques de collecte de données sont des sources prometteuses, qui pourraient permettre des analyses plus détaillés sur les réactions à long terme des espèces aux changements de paysage dans le futur. Ce travail a aussi montré la valeur des anciennes données de distribution, par exemple leur potentiel pour aider à localiser des' présences d'espèces encore inconnues. Les résultats peuvent contribuer à des activités de recherche à venir, qui étudieraient les distributions récentes ou futures d'espèces en considérant l'immense richesse des données de distribution historiques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a debate on whether an influence of biotic interactions on species distributions can be reflected at macro-scale levels. Whereas the influence of biotic interactions on spatial arrangements is beginning to be studied at local scales, similar studies at macro-scale levels are scarce. There is no example disentangling, from other similarities with related species, the influence of predator-prey interactions on species distributions at macro-scale levels. In this study we aimed to disentangle predator-prey interactions from species distribution data following an experimental approach including a factorial design. As a case of study we selected the short-toed eagle because of its known specialization on certain prey reptiles. We used presence-absence data at a 100 Km2 spatial resolution to extract the explanatory capacity of different environmental predictors (five abiotic and two biotic predictors) on the short-toed eagle species distribution in Peninsular Spain. Abiotic predictors were relevant climatic and topographic variables, and relevant biotic predictors were prey richness and forest density. In addition to the short-toed eagle, we also obtained the predictor's explanatory capacities for i) species of the same family Accipitridae (as a reference), ii) for other birds of different families (as controls) and iii) species with randomly selected presences (as null models). We run 650 models to test for similarities of the short-toed eagle, controls and null models with reference species, assessed by regressions of explanatory capacities. We found higher similarities between the short-toed eagle and other species of the family Accipitridae than for the other two groups. Once corrected by the family effect, our analyses revealed a signal of predator-prey interaction embedded in species distribution data. This result was corroborated with additional analyses testing for differences in the concordance between the distributions of different bird categories and the distributions of either prey or non-prey species of the short-toed eagle. Our analyses were useful to disentangle a signal of predator-prey interactions from species distribution data at a macro-scale. This study highlights the importance of disentangling specific features from the variation shared with a given taxonomic level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detailed large-scale information on mammal distribution has often been lacking, hindering conservation efforts. We used the information from the 2009 IUCN Red List of Threatened Species as a baseline for developing habitat suitability models for 5027 out of 5330 known terrestrial mammal species, based on their habitat relationships. We focused on the following environmental variables: land cover, elevation and hydrological features. Models were developed at 300 m resolution and limited to within species' known geographical ranges. A subset of the models was validated using points of known species occurrence. We conducted a global, fine-scale analysis of patterns of species richness. The richness of mammal species estimated by the overlap of their suitable habitat is on average one-third less than that estimated by the overlap of their geographical ranges. The highest absolute difference is found in tropical and subtropical regions in South America, Africa and Southeast Asia that are not covered by dense forest. The proportion of suitable habitat within mammal geographical ranges correlates with the IUCN Red List category to which they have been assigned, decreasing monotonically from Least Concern to Endangered. These results demonstrate the importance of fine-resolution distribution data for the development of global conservation strategies for mammals.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Background Multiple logistic regression is precluded from many practical applications in ecology that aim to predict the geographic distributions of species because it requires absence data, which are rarely available or are unreliable. In order to use multiple logistic regression, many studies have simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of strategy influences models and their geographic predictions of species. In this paper we evaluate the effect of several prevailing pseudo-absence strategies on the predictions of the geographic distribution of a virtual species whose "true" distribution and relationship to three environmental predictors was predefined. We evaluated the effect of using a) real absences b) pseudo-absences selected randomly from the background and c) two-step approaches: pseudo-absences selected from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA) or BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive power, and information-theoretic model selection results. Results Models built with true absences had the best predictive power, best discriminatory power, and the "true" model (the one that contained the correct predictors) was supported by the data according to AIC, as expected. Models based on random pseudo-absences had among the lowest fit, but yielded the second highest AUC value (0.97), and the "true" model was also supported by the data. Models based on two-step approaches had intermediate fit, the lowest predictive power, and the "true" model was not supported by the data. Conclusion If ecologists wish to build parsimonious GLM models that will allow them to make robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-absences, and perform model selection based on an information theoretic approach. However, the resulting models can be expected to have limited fit.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

1. Few examples of habitat-modelling studies of rare and endangered species exist in the literature, although from a conservation perspective predicting their distribution would prove particularly useful. Paucity of data and lack of valid absences are the probable reasons for this shortcoming. Analytic solutions to accommodate the lack of absence include the ecological niche factor analysis (ENFA) and the use of generalized linear models (GLM) with simulated pseudo-absences. 2. In this study we tested a new approach to generating pseudo-absences, based on a preliminary ENFA habitat suitability (HS) map, for the endangered species Eryngium alpinum. This method of generating pseudo-absences was compared with two others: (i) use of a GLM with pseudo-absences generated totally at random, and (ii) use of an ENFA only. 3. The influence of two different spatial resolutions (i.e. grain) was also assessed for tackling the dilemma of quality (grain) vs. quantity (number of occurrences). Each combination of the three above-mentioned methods with the two grains generated a distinct HS map. 4. Four evaluation measures were used for comparing these HS maps: total deviance explained, best kappa, Gini coefficient and minimal predicted area (MPA). The last is a new evaluation criterion proposed in this study. 5. Results showed that (i) GLM models using ENFA-weighted pseudo-absence provide better results, except for the MPA value, and that (ii) quality (spatial resolution and locational accuracy) of the data appears to be more important than quantity (number of occurrences). Furthermore, the proposed MPA value is suggested as a useful measure of model evaluation when used to complement classical statistical measures. 6. Synthesis and applications. We suggest that the use of ENFA-weighted pseudo-absence is a possible way to enhance the quality of GLM-based potential distribution maps and that data quality (i.e. spatial resolution) prevails over quantity (i.e. number of data). Increased accuracy of potential distribution maps could help to define better suitable areas for species protection and reintroduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. Model-based approaches have been used increasingly in conservation biology over recent years. Species presence data used for predictive species distribution modelling are abundant in natural history collections, whereas reliable absence data are sparse, most notably for vagrant species such as butterflies and snakes. As predictive methods such as generalized linear models (GLM) require absence data, various strategies have been proposed to select pseudo-absence data. However, only a few studies exist that compare different approaches to generating these pseudo-absence data. 2. Natural history collection data are usually available for long periods of time (decades or even centuries), thus allowing historical considerations. However, this historical dimension has rarely been assessed in studies of species distribution, although there is great potential for understanding current patterns, i.e. the past is the key to the present. 3. We used GLM to model the distributions of three 'target' butterfly species, Melitaea didyma, Coenonympha tullia and Maculinea teleius, in Switzerland. We developed and compared four strategies for defining pools of pseudo-absence data and applied them to natural history collection data from the last 10, 30 and 100 years. Pools included: (i) sites without target species records; (ii) sites where butterfly species other than the target species were present; (iii) sites without butterfly species but with habitat characteristics similar to those required by the target species; and (iv) a combination of the second and third strategies. Models were evaluated and compared by the total deviance explained, the maximized Kappa and the area under the curve (AUC). 4. Among the four strategies, model performance was best for strategy 3. Contrary to expectations, strategy 2 resulted in even lower model performance compared with models with pseudo-absence data simulated totally at random (strategy 1). 5. Independent of the strategy model, performance was enhanced when sites with historical species presence data were not considered as pseudo-absence data. Therefore, the combination of strategy 3 with species records from the last 100 years achieved the highest model performance. 6. Synthesis and applications. The protection of suitable habitat for species survival or reintroduction in rapidly changing landscapes is a high priority among conservationists. Model-based approaches offer planning authorities the possibility of delimiting priority areas for species detection or habitat protection. The performance of these models can be enhanced by fitting them with pseudo-absence data relying on large archives of natural history collection species presence data rather than using randomly sampled pseudo-absence data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biological invasions and land-use changes are two major causes of the global modifications of biodiversity. Habitat suitability models are the tools of choice to predict potential distributions of invasive species. Although land-use is a key driver of alien species invasions, it is often assumed that land-use is constant in time. Here we combine historical and present day information, to evaluate whether land-use changes could explain the dynamic of invasion of the American bullfrog Rana catesbeiana (=Lithobathes catesbeianus) in Northern Italy, from the 1950s to present-day. We used maxent to build habitat suitability models, on the basis of past (1960s, 1980s) and present-day data on land-uses and species distribution. For example, we used models built using the 1960s data to predict distribution in the 1980s, and so on. Furthermore, we used land-use scenarios to project suitability in the future. Habitat suitability models predicted well the spread of bullfrogs in the subsequent temporal step. Models considering land-use changes predicted invasion dynamics better than models assuming constant land-use over the last 50 years. Scenarios of future land-use suggest that suitability will remain similar in the next years. Habitat suitability models can help to understand and predict the dynamics of invasions; however, land-use is not constant in time: land-use modifications can strongly affect invasions; furthermore, both land management and the suitability of a given land-use class may vary in time. An integration of land-use changes in studies of biological invasions can help to improve management strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SUMMARYSpecies distribution models (SDMs) represent nowadays an essential tool in the research fields of ecology and conservation biology. By combining observations of species occurrence or abundance with information on the environmental characteristic of the observation sites, they can provide information on the ecology of species, predict their distributions across the landscape or extrapolate them to other spatial or time frames. The advent of SDMs, supported by geographic information systems (GIS), new developments in statistical models and constantly increasing computational capacities, has revolutionized the way ecologists can comprehend species distributions in their environment. SDMs have brought the tool that allows describing species realized niches across a multivariate environmental space and predict their spatial distribution. Predictions, in the form of probabilistic maps showing the potential distribution of the species, are an irreplaceable mean to inform every single unit of a territory about its biodiversity potential. SDMs and the corresponding spatial predictions can be used to plan conservation actions for particular species, to design field surveys, to assess the risks related to the spread of invasive species, to select reserve locations and design reserve networks, and ultimately, to forecast distributional changes according to scenarios of climate and/or land use change.By assessing the effect of several factors on model performance and on the accuracy of spatial predictions, this thesis aims at improving techniques and data available for distribution modelling and at providing the best possible information to conservation managers to support their decisions and action plans for the conservation of biodiversity in Switzerland and beyond. Several monitoring programs have been put in place from the national to the global scale, and different sources of data now exist and start to be available to researchers who want to model species distribution. However, because of the lack of means, data are often not gathered at an appropriate resolution, are sampled only over limited areas, are not spatially explicit or do not provide a sound biological information. A typical example of this is data on 'habitat' (sensu biota). Even though this is essential information for an effective conservation planning, it often has to be approximated from land use, the closest available information. Moreover, data are often not sampled according to an established sampling design, which can lead to biased samples and consequently to spurious modelling results. Understanding the sources of variability linked to the different phases of the modelling process and their importance is crucial in order to evaluate the final distribution maps that are to be used for conservation purposes.The research presented in this thesis was essentially conducted within the framework of the Landspot Project, a project supported by the Swiss National Science Foundation. The main goal of the project was to assess the possible contribution of pre-modelled 'habitat' units to model the distribution of animal species, in particular butterfly species, across Switzerland. While pursuing this goal, different aspects of data quality, sampling design and modelling process were addressed and improved, and implications for conservation discussed. The main 'habitat' units considered in this thesis are grassland and forest communities of natural and anthropogenic origin as defined in the typology of habitats for Switzerland. These communities are mainly defined at the phytosociological level of the alliance. For the time being, no comprehensive map of such communities is available at the national scale and at fine resolution. As a first step, it was therefore necessary to create distribution models and maps for these communities across Switzerland and thus to gather and collect the necessary data. In order to reach this first objective, several new developments were necessary such as the definition of expert models, the classification of the Swiss territory in environmental domains, the design of an environmentally stratified sampling of the target vegetation units across Switzerland, the development of a database integrating a decision-support system assisting in the classification of the relevés, and the downscaling of the land use/cover data from 100 m to 25 m resolution.The main contributions of this thesis to the discipline of species distribution modelling (SDM) are assembled in four main scientific papers. In the first, published in Journal of Riogeography different issues related to the modelling process itself are investigated. First is assessed the effect of five different stepwise selection methods on model performance, stability and parsimony, using data of the forest inventory of State of Vaud. In the same paper are also assessed: the effect of weighting absences to ensure a prevalence of 0.5 prior to model calibration; the effect of limiting absences beyond the environmental envelope defined by presences; four different methods for incorporating spatial autocorrelation; and finally, the effect of integrating predictor interactions. Results allowed to specifically enhance the GRASP tool (Generalized Regression Analysis and Spatial Predictions) that now incorporates new selection methods and the possibility of dealing with interactions among predictors as well as spatial autocorrelation. The contribution of different sources of remotely sensed information to species distribution models was also assessed. The second paper (to be submitted) explores the combined effects of sample size and data post-stratification on the accuracy of models using data on grassland distribution across Switzerland collected within the framework of the Landspot project and supplemented with other important vegetation databases. For the stratification of the data, different spatial frameworks were compared. In particular, environmental stratification by Swiss Environmental Domains was compared to geographical stratification either by biogeographic regions or political states (cantons). The third paper (to be submitted) assesses the contribution of pre- modelled vegetation communities to the modelling of fauna. It is a two-steps approach that combines the disciplines of community ecology and spatial ecology and integrates their corresponding concepts of habitat. First are modelled vegetation communities per se and then these 'habitat' units are used in order to model animal species habitat. A case study is presented with grassland communities and butterfly species. Different ways of integrating vegetation information in the models of butterfly distribution were also evaluated. Finally, a glimpse to climate change is given in the fourth paper, recently published in Ecological Modelling. This paper proposes a conceptual framework for analysing range shifts, namely a catalogue of the possible patterns of change in the distribution of a species along elevational or other environmental gradients and an improved quantitative methodology to identify and objectively describe these patterns. The methodology was developed using data from the Swiss national common breeding bird survey and the article presents results concerning the observed shifts in the elevational distribution of breeding birds in Switzerland.The overall objective of this thesis is to improve species distribution models as potential inputs for different conservation tools (e.g. red lists, ecological networks, risk assessment of the spread of invasive species, vulnerability assessment in the context of climate change). While no conservation issues or tools are directly tested in this thesis, the importance of the proposed improvements made in species distribution modelling is discussed in the context of the selection of reserve networks.RESUMELes modèles de distribution d'espèces (SDMs) représentent aujourd'hui un outil essentiel dans les domaines de recherche de l'écologie et de la biologie de la conservation. En combinant les observations de la présence des espèces ou de leur abondance avec des informations sur les caractéristiques environnementales des sites d'observation, ces modèles peuvent fournir des informations sur l'écologie des espèces, prédire leur distribution à travers le paysage ou l'extrapoler dans l'espace et le temps. Le déploiement des SDMs, soutenu par les systèmes d'information géographique (SIG), les nouveaux développements dans les modèles statistiques, ainsi que la constante augmentation des capacités de calcul, a révolutionné la façon dont les écologistes peuvent comprendre la distribution des espèces dans leur environnement. Les SDMs ont apporté l'outil qui permet de décrire la niche réalisée des espèces dans un espace environnemental multivarié et prédire leur distribution spatiale. Les prédictions, sous forme de carte probabilistes montrant la distribution potentielle de l'espèce, sont un moyen irremplaçable d'informer chaque unité du territoire de sa biodiversité potentielle. Les SDMs et les prédictions spatiales correspondantes peuvent être utilisés pour planifier des mesures de conservation pour des espèces particulières, pour concevoir des plans d'échantillonnage, pour évaluer les risques liés à la propagation d'espèces envahissantes, pour choisir l'emplacement de réserves et les mettre en réseau, et finalement, pour prévoir les changements de répartition en fonction de scénarios de changement climatique et/ou d'utilisation du sol. En évaluant l'effet de plusieurs facteurs sur la performance des modèles et sur la précision des prédictions spatiales, cette thèse vise à améliorer les techniques et les données disponibles pour la modélisation de la distribution des espèces et à fournir la meilleure information possible aux gestionnaires pour appuyer leurs décisions et leurs plans d'action pour la conservation de la biodiversité en Suisse et au-delà. Plusieurs programmes de surveillance ont été mis en place de l'échelle nationale à l'échelle globale, et différentes sources de données sont désormais disponibles pour les chercheurs qui veulent modéliser la distribution des espèces. Toutefois, en raison du manque de moyens, les données sont souvent collectées à une résolution inappropriée, sont échantillonnées sur des zones limitées, ne sont pas spatialement explicites ou ne fournissent pas une information écologique suffisante. Un exemple typique est fourni par les données sur 'l'habitat' (sensu biota). Même s'il s'agit d'une information essentielle pour des mesures de conservation efficaces, elle est souvent approximée par l'utilisation du sol, l'information qui s'en approche le plus. En outre, les données ne sont souvent pas échantillonnées selon un plan d'échantillonnage établi, ce qui biaise les échantillons et par conséquent les résultats de la modélisation. Comprendre les sources de variabilité liées aux différentes phases du processus de modélisation s'avère crucial afin d'évaluer l'utilisation des cartes de distribution prédites à des fins de conservation.La recherche présentée dans cette thèse a été essentiellement menée dans le cadre du projet Landspot, un projet soutenu par le Fond National Suisse pour la Recherche. L'objectif principal de ce projet était d'évaluer la contribution d'unités 'd'habitat' pré-modélisées pour modéliser la répartition des espèces animales, notamment de papillons, à travers la Suisse. Tout en poursuivant cet objectif, différents aspects touchant à la qualité des données, au plan d'échantillonnage et au processus de modélisation sont abordés et améliorés, et leurs implications pour la conservation des espèces discutées. Les principaux 'habitats' considérés dans cette thèse sont des communautés de prairie et de forêt d'origine naturelle et anthropique telles que définies dans la typologie des habitats de Suisse. Ces communautés sont principalement définies au niveau phytosociologique de l'alliance. Pour l'instant aucune carte de la distribution de ces communautés n'est disponible à l'échelle nationale et à résolution fine. Dans un premier temps, il a donc été nécessaire de créer des modèles de distribution de ces communautés à travers la Suisse et par conséquent de recueillir les données nécessaires. Afin d'atteindre ce premier objectif, plusieurs nouveaux développements ont été nécessaires, tels que la définition de modèles experts, la classification du territoire suisse en domaines environnementaux, la conception d'un échantillonnage environnementalement stratifié des unités de végétation cibles dans toute la Suisse, la création d'une base de données intégrant un système d'aide à la décision pour la classification des relevés, et le « downscaling » des données de couverture du sol de 100 m à 25 m de résolution. Les principales contributions de cette thèse à la discipline de la modélisation de la distribution d'espèces (SDM) sont rassemblées dans quatre articles scientifiques. Dans le premier article, publié dans le Journal of Biogeography, différentes questions liées au processus de modélisation sont étudiées en utilisant les données de l'inventaire forestier de l'Etat de Vaud. Tout d'abord sont évalués les effets de cinq méthodes de sélection pas-à-pas sur la performance, la stabilité et la parcimonie des modèles. Dans le même article sont également évalués: l'effet de la pondération des absences afin d'assurer une prévalence de 0.5 lors de la calibration du modèle; l'effet de limiter les absences au-delà de l'enveloppe définie par les présences; quatre méthodes différentes pour l'intégration de l'autocorrélation spatiale; et enfin, l'effet de l'intégration d'interactions entre facteurs. Les résultats présentés dans cet article ont permis d'améliorer l'outil GRASP qui intègre désonnais de nouvelles méthodes de sélection et la possibilité de traiter les interactions entre variables explicatives, ainsi que l'autocorrélation spatiale. La contribution de différentes sources de données issues de la télédétection a également été évaluée. Le deuxième article (en voie de soumission) explore les effets combinés de la taille de l'échantillon et de la post-stratification sur le la précision des modèles. Les données utilisées ici sont celles concernant la répartition des prairies de Suisse recueillies dans le cadre du projet Landspot et complétées par d'autres sources. Pour la stratification des données, différents cadres spatiaux ont été comparés. En particulier, la stratification environnementale par les domaines environnementaux de Suisse a été comparée à la stratification géographique par les régions biogéographiques ou par les cantons. Le troisième article (en voie de soumission) évalue la contribution de communautés végétales pré-modélisées à la modélisation de la faune. C'est une approche en deux étapes qui combine les disciplines de l'écologie des communautés et de l'écologie spatiale en intégrant leurs concepts de 'habitat' respectifs. Les communautés végétales sont modélisées d'abord, puis ces unités de 'habitat' sont utilisées pour modéliser les espèces animales. Une étude de cas est présentée avec des communautés prairiales et des espèces de papillons. Différentes façons d'intégrer l'information sur la végétation dans les modèles de répartition des papillons sont évaluées. Enfin, un clin d'oeil aux changements climatiques dans le dernier article, publié dans Ecological Modelling. Cet article propose un cadre conceptuel pour l'analyse des changements dans la distribution des espèces qui comprend notamment un catalogue des différentes formes possibles de changement le long d'un gradient d'élévation ou autre gradient environnemental, et une méthode quantitative améliorée pour identifier et décrire ces déplacements. Cette méthodologie a été développée en utilisant des données issues du monitoring des oiseaux nicheurs répandus et l'article présente les résultats concernant les déplacements observés dans la distribution altitudinale des oiseaux nicheurs en Suisse.L'objectif général de cette thèse est d'améliorer les modèles de distribution des espèces en tant que source d'information possible pour les différents outils de conservation (par exemple, listes rouges, réseaux écologiques, évaluation des risques de propagation d'espèces envahissantes, évaluation de la vulnérabilité des espèces dans le contexte de changement climatique). Bien que ces questions de conservation ne soient pas directement testées dans cette thèse, l'importance des améliorations proposées pour la modélisation de la distribution des espèces est discutée à la fin de ce travail dans le contexte de la sélection de réseaux de réserves.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AimTo identify the bioclimatic niche of the endangered Andean cat (Leopardus jacobita), one of the rarest and least known felids in the world, by developing a species distribution model.LocationSouth America, High Andes and Patagonian steppe. Peru, Bolivia, Chile, Argentina.MethodsWe used 108 Andean cat records to build the models, and 27 to test them, applying the Maxent algorithm to sets of uncorrelated bioclimatic variables from global databases, including elevation. We based our biogeographical interpretations on the examination of the predicted geographic range, the modelled response curves and latitudinal variations in climatic variables associated with the locality data.ResultsSimple bioclimatic models for Andean cats were highly predictive with only 3-4 explanatory variables. The climatic niche of the species was defined by extreme diurnal variations in temperature, cold minimum and moderate maximum temperatures, and aridity, characteristic not only of the Andean highlands but also of the Patagonian steppe. Argentina had the highest representation of suitable climates, and Chile the lowest. The most favourable conditions were centrally located and spanned across international boundaries. Discontinuities in suitable climatic conditions coincided with three biogeographical barriers associated with climatic or topographic transitions.Main conclusionsSimple bioclimatic models can produce useful predictions of suitable climatic conditions for rare species, including major biogeographical constraints. In our study case, these constraints are also known to affect the distribution of other Andean species and the genetic structure of Andean cat populations. We recommend surveys of areas with suitable climates and no Andean cat records, including the corridor connecting two core populations. The inclusion of landscape variables at finer scales, crucially the distribution of Andean cat prey, would contribute to refine our predictions for conservation applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1 Insect pests, biological invasions and climate change are considered to representmajor threats to biodiversity, ecosystem functioning, agriculture and forestry.Deriving hypothesis of contemporary and/or future potential distributions of insectpests and invasive species is becoming an important tool for predicting the spatialstructure of potential threats.2 The western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte is apest of maize in North America that has invaded Europe in recent years, resultingin economic costs in terms of maize yields in both continents. The present studyaimed to estimate the dynamics of potential areas of invasion by the WCR under aclimate change scenario in the Northern Hemisphere. The areas at risk under thisscenario were assessed by comparing, using complementary approaches, the spatialprojections of current and future areas of climatic favourability of the WCR. Spatialhypothesis were generated with respect to the presence records in the native rangeof the WCR and physiological thresholds from previous empirical studies.3 We used a previously developed protocol specifically designed to estimatethe climatic favourability of the WCR. We selected the most biologicallyrelevant climatic predictors and then used multidimensional envelope (MDE) andMahalanobis distances (MD) approaches to derive potential distributions for currentand future climatic conditions.4 The results obtained showed a northward advancement of the upper physiologicallimit as a result of climate change, which might increase the strength of outbreaksat higher latitudes. In addition, both MDE and MD outputs predict the stability ofclimatic favourability for the WCR in the core of the already invaded area in Europe,which suggests that this zone would continue to experience damage from this pestin Europe.