9 resultados para Predicate calculus.
em Université de Lausanne, Switzerland
Resumo:
Résumé Le μ-calcul est une extension de la logique modale par des opérateurs de point fixe. Dans ce travail nous étudions la complexité de certains fragments de cette logique selon deux points de vue, différents mais étroitement liés: l'un syntaxique (ou combinatoire) et l'autre topologique. Du point de vue syn¬taxique, les propriétés définissables dans ce formalisme sont classifiées selon la complexité combinatoire des formules de cette logique, c'est-à-dire selon le nombre d'alternances des opérateurs de point fixe. Comparer deux ensembles de modèles revient ainsi à comparer la complexité syntaxique des formules as¬sociées. Du point de vue topologique, les propriétés définissables dans cette logique sont comparées à l'aide de réductions continues ou selon leurs positions dans la hiérarchie de Borel ou dans celle projective. Dans la première partie de ce travail nous adoptons le point de vue syntax¬ique afin d'étudier le comportement du μ-calcul sur des classes restreintes de modèles. En particulier nous montrons que: (1) sur la classe des modèles symétriques et transitifs le μ-calcul est aussi expressif que la logique modale; (2) sur la classe des modèles transitifs, toute propriété définissable par une formule du μ-calcul est définissable par une formule sans alternance de points fixes, (3) sur la classe des modèles réflexifs, il y a pour tout η une propriété qui ne peut être définie que par une formule du μ-calcul ayant au moins η alternances de points fixes, (4) sur la classe des modèles bien fondés et transitifs le μ-calcul est aussi expressif que la logique modale. Le fait que le μ-calcul soit aussi expressif que la logique modale sur la classe des modèles bien fondés et transitifs est bien connu. Ce résultat est en ef¬fet la conséquence d'un théorème de point fixe prouvé indépendamment par De Jongh et Sambin au milieu des années 70. La preuve que nous donnons de l'effondrement de l'expressivité du μ-calcul sur cette classe de modèles est néanmoins indépendante de ce résultat. Par la suite, nous étendons le langage du μ-calcul en permettant aux opérateurs de point fixe de lier des occurrences négatives de variables libres. En montrant alors que ce formalisme est aussi ex¬pressif que le fragment modal, nous sommes en mesure de fournir une nouvelle preuve du théorème d'unicité des point fixes de Bernardi, De Jongh et Sambin et une preuve constructive du théorème d'existence de De Jongh et Sambin. RÉSUMÉ Pour ce qui concerne les modèles transitifs, du point de vue topologique cette fois, nous prouvons que la logique modale correspond au fragment borélien du μ-calcul sur cette classe des systèmes de transition. Autrement dit, nous vérifions que toute propriété définissable des modèles transitifs qui, du point de vue topologique, est une propriété borélienne, est nécessairement une propriété modale, et inversement. Cette caractérisation du fragment modal découle du fait que nous sommes en mesure de montrer que, modulo EF-bisimulation, un ensemble d'arbres est définissable dans la logique temporelle Ε F si et seulement il est borélien. Puisqu'il est possible de montrer que ces deux propriétés coïncident avec une caractérisation effective de la définissabilité dans la logique Ε F dans le cas des arbres à branchement fini donnée par Bojanczyk et Idziaszek [24], nous obtenons comme corollaire leur décidabilité. Dans une deuxième partie, nous étudions la complexité topologique d'un sous-fragment du fragment sans alternance de points fixes du μ-calcul. Nous montrons qu'un ensemble d'arbres est définissable par une formule de ce frag¬ment ayant au moins η alternances si et seulement si cette propriété se trouve au moins au n-ième niveau de la hiérarchie de Borel. Autrement dit, nous vérifions que pour ce fragment du μ-calcul, les points de vue topologique et combina- toire coïncident. De plus, nous décrivons une procédure effective capable de calculer pour toute propriété définissable dans ce langage sa position dans la hiérarchie de Borel, et donc le nombre d'alternances de points fixes nécessaires à la définir. Nous nous intéressons ensuite à la classification des ensembles d'arbres par réduction continue, et donnons une description effective de l'ordre de Wadge de la classe des ensembles d'arbres définissables dans le formalisme considéré. En particulier, la hiérarchie que nous obtenons a une hauteur (ωω)ω. Nous complétons ces résultats en décrivant un algorithme permettant de calculer la position dans cette hiérarchie de toute propriété définissable.
Resumo:
Evidences collected from smartphones users show a growing desire of personalization offered by services for mobile devices. However, the need to accurately identify users' contexts has important implications for user's privacy and it increases the amount of trust, which users are requested to have in the service providers. In this paper, we introduce a model that describes the role of personalization and control in users' assessment of cost and benefits associated to the disclosure of private information. We present an instantiation of such model, a context-aware application for smartphones based on the Android operating system, in which users' private information are protected. Focus group interviews were conducted to examine users' privacy concerns before and after having used our application. Obtained results confirm the utility of our artifact and provide support to our theoretical model, which extends previous literature on privacy calculus and user's acceptance of context-aware technology.
Resumo:
The present thesis is a contribution to the debate on the applicability of mathematics; it examines the interplay between mathematics and the world, using historical case studies. The first part of the thesis consists of four small case studies. In chapter 1, I criticize "ante rem structuralism", proposed by Stewart Shapiro, by showing that his so-called "finite cardinal structures" are in conflict with mathematical practice. In chapter 2, I discuss Leonhard Euler's solution to the Königsberg bridges problem. I propose interpreting Euler's solution both as an explanation within mathematics and as a scientific explanation. I put the insights from the historical case to work against recent philosophical accounts of the Königsberg case. In chapter 3, I analyze the predator-prey model, proposed by Lotka and Volterra. I extract some interesting philosophical lessons from Volterra's original account of the model, such as: Volterra's remarks on mathematical methodology; the relation between mathematics and idealization in the construction of the model; some relevant details in the derivation of the Third Law, and; notions of intervention that are motivated by one of Volterra's main mathematical tools, phase spaces. In chapter 4, I discuss scientific and mathematical attempts to explain the structure of the bee's honeycomb. In the first part, I discuss a candidate explanation, based on the mathematical Honeycomb Conjecture, presented in Lyon and Colyvan (2008). I argue that this explanation is not scientifically adequate. In the second part, I discuss other mathematical, physical and biological studies that could contribute to an explanation of the bee's honeycomb. The upshot is that most of the relevant mathematics is not yet sufficiently understood, and there is also an ongoing debate as to the biological details of the construction of the bee's honeycomb. The second part of the thesis is a bigger case study from physics: the genesis of GR. Chapter 5 is a short introduction to the history, physics and mathematics that is relevant to the genesis of general relativity (GR). Chapter 6 discusses the historical question as to what Marcel Grossmann contributed to the genesis of GR. I will examine the so-called "Entwurf" paper, an important joint publication by Einstein and Grossmann, containing the first tensorial formulation of GR. By comparing Grossmann's part with the mathematical theories he used, we can gain a better understanding of what is involved in the first steps of assimilating a mathematical theory to a physical question. In chapter 7, I introduce, and discuss, a recent account of the applicability of mathematics to the world, the Inferential Conception (IC), proposed by Bueno and Colyvan (2011). I give a short exposition of the IC, offer some critical remarks on the account, discuss potential philosophical objections, and I propose some extensions of the IC. In chapter 8, I put the Inferential Conception (IC) to work in the historical case study: the genesis of GR. I analyze three historical episodes, using the conceptual apparatus provided by the IC. In episode one, I investigate how the starting point of the application process, the "assumed structure", is chosen. Then I analyze two small application cycles that led to revisions of the initial assumed structure. In episode two, I examine how the application of "new" mathematics - the application of the Absolute Differential Calculus (ADC) to gravitational theory - meshes with the IC. In episode three, I take a closer look at two of Einstein's failed attempts to find a suitable differential operator for the field equations, and apply the conceptual tools provided by the IC so as to better understand why he erroneously rejected both the Ricci tensor and the November tensor in the Zurich Notebook.
Resumo:
While mobile technologies can provide great personalized services for mobile users, they also threaten their privacy. Such personalization-privacy paradox are particularly salient for context aware technology based mobile applications where user's behaviors, movement and habits can be associated with a consumer's personal identity. In this thesis, I studied the privacy issues in the mobile context, particularly focus on an adaptive privacy management system design for context-aware mobile devices, and explore the role of personalization and control over user's personal data. This allowed me to make multiple contributions, both theoretical and practical. In the theoretical world, I propose and prototype an adaptive Single-Sign On solution that use user's context information to protect user's private information for smartphone. To validate this solution, I first proved that user's context is a unique user identifier and context awareness technology can increase user's perceived ease of use of the system and service provider's authentication security. I then followed a design science research paradigm and implemented this solution into a mobile application called "Privacy Manager". I evaluated the utility by several focus group interviews, and overall the proposed solution fulfilled the expected function and users expressed their intentions to use this application. To better understand the personalization-privacy paradox, I built on the theoretical foundations of privacy calculus and technology acceptance model to conceptualize the theory of users' mobile privacy management. I also examined the role of personalization and control ability on my model and how these two elements interact with privacy calculus and mobile technology model. In the practical realm, this thesis contributes to the understanding of the tradeoff between the benefit of personalized services and user's privacy concerns it may cause. By pointing out new opportunities to rethink how user's context information can protect private data, it also suggests new elements for privacy related business models.
Parts, places, and perspectives : a theory of spatial relations based an mereotopology and convexity
Resumo:
This thesis suggests to carry on the philosophical work begun in Casati's and Varzi's seminal book Parts and Places, by extending their general reflections on the basic formal structure of spatial representation beyond mereotopology and absolute location to the question of perspectives and perspective-dependent spatial relations. We show how, on the basis of a conceptual analysis of such notions as perspective and direction, a mereotopological theory with convexity can express perspectival spatial relations in a strictly qualitative framework. We start by introducing a particular mereotopological theory, AKGEMT, and argue that it constitutes an adequate core for a theory of spatial relations. Two features of AKGEMT are of particular importance: AKGEMT is an extensional mereotopology, implying that sameness of proper parts is a sufficient and necessary condition for identity, and it allows for (lower- dimensional) boundary elements in its domain of quantification. We then discuss an extension of AKGEMT, AKGEMTS, which results from the addition of a binary segment operator whose interpretation is that of a straight line segment between mereotopological points. Based on existing axiom systems in standard point-set topology, we propose an axiomatic characterisation of the segment operator and show that it is strong enough to sustain complex properties of a convexity predicate and a convex hull operator. We compare our segment-based characterisation of the convex hull to Cohn et al.'s axioms for the convex hull operator, arguing that our notion of convexity is significantly stronger. The discussion of AKGEMTS defines the background theory of spatial representation on which the developments in the second part of this thesis are built. The second part deals with perspectival spatial relations in two-dimensional space, i.e., such relations as those expressed by 'in front of, 'behind', 'to the left/right of, etc., and develops a qualitative formalism for perspectival relations within the framework of AKGEMTS. Two main claims are defended in part 2: That perspectival relations in two-dimensional space are four- place relations of the kind R(x, y, z, w), to be read as x is i?-related to y as z looks at w; and that these four-place structures can be satisfactorily expressed within the qualitative theory AKGEMTS. To defend these two claims, we start by arguing for a unified account of perspectival relations, thus rejecting the traditional distinction between 'relative' and 'intrinsic' perspectival relations. We present a formal theory of perspectival relations in the framework of AKGEMTS, deploying the idea that perspectival relations in two-dimensional space are four-place relations, having a locational and a perspectival part and show how this four-place structure leads to a unified framework of perspectival relations. Finally, we present a philosophical motivation to the idea that perspectival relations are four-place, cashing out the thesis that perspectives are vectorial properties and argue that vectorial properties are relations between spatial entities. Using Fine's notion of "qua objects" for an analysis of points of view, we show at last how our four-place approach to perspectival relations compares to more traditional understandings.
Resumo:
Two-way alternating automata were introduced by Vardi in order to study the satisfiability problem for the modal μ-calculus extended with backwards modalities. In this paper, we present a very simple proof by way of Wadge games of the strictness of the hierarchy of Motowski indices of two-way alternating automata over trees.
Resumo:
We present a two-level model of concurrent communicating systems (CCS) to serve as a basis formachine consciousness. A language implementing threads within logic programming is ¯rstintroduced. This high-level framework allows for the de¯nition of abstract processes that can beexecuted on a virtual machine. We then look for a possible grounding of these processes into thebrain. Towards this end, we map abstract de¯nitions (including logical expressions representingcompiled knowledge) into a variant of the pi-calculus. We illustrate this approach through aseries of examples extending from a purely reactive behavior to patterns of consciousness.