12 resultados para Power Distribution Poles
em Université de Lausanne, Switzerland
Resumo:
The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although statistically significant responses could be detected in more than 50% of trials for every subject. Overall, we conclude that the proposed setup is well suited for simultaneous EEG-fMRI at 7T.
Resumo:
Abiotic factors are considered strong drivers of species distribution and assemblages. Yet these spatial patterns are also influenced by biotic interactions. Accounting for competitors or facilitators may improve both the fit and the predictive power of species distribution models (SDMs). We investigated the influence of a dominant species, Empetrum nigrum ssp. hermaphroditum, on the distribution of 34 subordinate species in the tundra of northern Norway. We related SDM parameters of those subordinate species to their functional traits and their co-occurrence patterns with E. hermaphroditum across three spatial scales. By combining both approaches, we sought to understand whether these species may be limited by competitive interactions and/or benefit from habitat conditions created by the dominant species. The model fit and predictive power increased for most species when the frequency of occurrence of E. hermaphroditum was included in the SDMs as a predictor. The largest increase was found for species that 1) co-occur most of the time with E. hermaphroditum, both at large (i.e. 750 m) and small spatial scale (i.e. 2 m) or co-occur with E. hermaphroditum at large scale but not at small scale and 2) have particularly low or high leaf dry matter content (LDMC). Species that do not co-occur with E. hermaphroditum at the smallest scale are generally palatable herbaceous species with low LDMC, thus showing a weak ability to tolerate resource depletion that is directly or indirectly induced by E. hermaphroditum. Species with high LDMC, showing a better aptitude to face resource depletion and grazing, are often found in the proximity of E. hermaphroditum. Our results are consistent with previous findings that both competition and facilitation structure plant distribution and assemblages in the Arctic tundra. The functional and co-occurrence approaches used were complementary and provided a deeper understanding of the observed patterns by refinement of the pool of potential direct and indirect ecological effects of E. hermaphroditum on the distribution of subordinate species. Our correlative study would benefit being complemented by experimental approaches.
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
Background Multiple logistic regression is precluded from many practical applications in ecology that aim to predict the geographic distributions of species because it requires absence data, which are rarely available or are unreliable. In order to use multiple logistic regression, many studies have simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of strategy influences models and their geographic predictions of species. In this paper we evaluate the effect of several prevailing pseudo-absence strategies on the predictions of the geographic distribution of a virtual species whose "true" distribution and relationship to three environmental predictors was predefined. We evaluated the effect of using a) real absences b) pseudo-absences selected randomly from the background and c) two-step approaches: pseudo-absences selected from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA) or BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive power, and information-theoretic model selection results. Results Models built with true absences had the best predictive power, best discriminatory power, and the "true" model (the one that contained the correct predictors) was supported by the data according to AIC, as expected. Models based on random pseudo-absences had among the lowest fit, but yielded the second highest AUC value (0.97), and the "true" model was also supported by the data. Models based on two-step approaches had intermediate fit, the lowest predictive power, and the "true" model was not supported by the data. Conclusion If ecologists wish to build parsimonious GLM models that will allow them to make robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-absences, and perform model selection based on an information theoretic approach. However, the resulting models can be expected to have limited fit.
Resumo:
Studies of species range determinants have traditionally focused on abiotic variables (typically climatic conditions), and therefore the recent explicit consideration of biotic interactions represents an important advance in the field. While these studies clearly support the role of biotic interactions in shaping species distributions, most examine only the influence of a single species and/or a single interaction, failing to account for species being subject to multiple concurrent interactions. By fitting species distribution models (SDMs), we examine the influence of multiple vertical (i.e., grazing, trampling, and manuring by mammalian herbivores) and horizontal (i.e., competition and facilitation; estimated from the cover of dominant plant species) interspecific interactions on the occurrence and cover of 41 alpine tundra plant species. Adding plant-plant interactions to baseline SDMs (using five field-quantified abiotic variables) significantly improved models' predictive power for independent data, while herbivore-related variables had only a weak influence. Overall, abiotic variables had the strongest individual contributions to the distribution of alpine tundra plants, with the importance of horizontal interaction variables exceeding that of vertical interaction variables. These results were consistent across three modeling techniques, for both species occurrence and cover, demonstrating the pattern to be robust. Thus, the explicit consideration of multiple biotic interactions reveals that plant-plant interactions exert control over the fine-scale distribution of vascular species that is comparable to abiotic drivers and considerably stronger than herbivores in this low-energy system.
Resumo:
Questions Soil properties have been widely shown to influence plant growth and distribution. However, the degree to which edaphic variables can improve models based on topo-climatic variables is still unclear. In this study, we tested the roles of seven edaphic variables, namely (1) pH; (2) the content of nitrogen and of (3) phosphorus; (4) silt; (5) sand; (6) clay and (7) carbon-to-nitrogen ratio, as predictors of species distribution models in an edaphically heterogeneous landscape. We also tested how the respective influence of these variables in the models is linked to different ecological and functional species characteristics. Location The Western Alps, Switzerland. Methods With four different modelling techniques, we built models for 115 plant species using topo-climatic variables alone and then topo-climatic variables plus each of the seven edaphic variables, one at a time. We evaluated the contribution of each edaphic variable by assessing the change in predictive power of the model. In a second step, we evaluated the importance of the two edaphic variables that yielded the largest increase in predictive power in one final set of models for each species. Third, we explored the change in predictive power and the importance of variables across plant functional groups. Finally, we assessed the influence of the edaphic predictors on the prediction of community composition by stacking the models for all species and comparing the predicted communities with the observed community. Results Among the set of edaphic variables studied, pH and nitrogen content showed the highest contributions to improvement of the predictive power of the models, as well as the predictions of community composition. When considering all topo-climatic and edaphic variables together, pH was the second most important variable after degree-days. The changes in model results caused by edaphic predictors were dependent on species characteristics. The predictions for the species that have a low specific leaf area, and acidophilic preferences, tolerating low soil pH and high humus content, showed the largest improvement by the addition of pH and nitrogen in the model. Conclusions pH was an important predictor variable for explaining species distribution and community composition of the mountain plants considered in our study. pH allowed more precise predictions for acidophilic species. This variable should not be neglected in the construction of species distribution models in areas with contrasting edaphic conditions.
Resumo:
Recent advances in remote sensing technologies have facilitated the generation of very high resolution (VHR) environmental data. Exploratory studies suggested that, if used in species distribution models (SDMs), these data should enable modelling species' micro-habitats and allow improving predictions for fine-scale biodiversity management. In the present study, we tested the influence, in SDMs, of predictors derived from a VHR digital elevation model (DEM) by comparing the predictive power of models for 239 plant species and their assemblages fitted at six different resolutions in the Swiss Alps. We also tested whether changes of the model quality for a species is related to its functional and ecological characteristics. Refining the resolution only contributed to slight improvement of the models for more than half of the examined species, with the best results obtained at 5 m, but no significant improvement was observed, on average, across all species. Contrary to our expectations, we could not consistently correlate the changes in model performance with species characteristics such as vegetation height. Temperature, the most important variable in the SDMs across the different resolutions, did not contribute any substantial improvement. Our results suggest that improving resolution of topographic data only is not sufficient to improve SDM predictions - and therefore local management - compared to previously used resolutions (here 25 and 100 m). More effort should be dedicated now to conduct finer-scale in-situ environmental measurements (e.g. for temperature, moisture, snow) to obtain improved environmental measurements for fine-scale species mapping and management.
Resumo:
Indirect topographic variables have been used successfully as surrogates for disturbance processes in plant species distribution models (SDM) in mountain environments. However, no SDM studies have directly tested the performance of disturbance variables. In this study, we developed two disturbance variables: a geomorphic index (GEO) and an index of snow redistribution by wind (SNOW). These were developed in order to assess how they improved both the fit and predictive power of presenceabsence SDM based on commonly used topoclimatic (TC) variables for 91 plants in the Western Swiss Alps. The individual contribution of the disturbance variables was compared to TC variables. Maps of models were prepared to spatially test the effect of disturbance variables. On average, disturbance variables significantly improved the fit but not the predictive power of the TC models and their individual contribution was weak (5.6% for GEO and 3.3% for SNOW). However their maximum individual contribution was important (24.7% and 20.7%). Finally, maps including disturbance variables (i) were significantly divergent from TC models in terms of predicted suitable surfaces and connectivity between potential habitats, and (ii) were interpreted as more ecologically relevant. Disturbance variables did not improve the transferability of models at the local scale in a complex mountain system, and the performance and contribution of these variables were highly species-specific. However, improved spatial projections and change in connectivity are important issues when preparing projections under climate change because the future range size of the species will determine the sensitivity to changing conditions.
Resumo:
Positive selection is widely estimated from protein coding sequence alignments by the nonsynonymous-to-synonymous ratio omega. Increasingly elaborate codon models are used in a likelihood framework for this estimation. Although there is widespread concern about the robustness of the estimation of the omega ratio, more efforts are needed to estimate this robustness, especially in the context of complex models. Here, we focused on the branch-site codon model. We investigated its robustness on a large set of simulated data. First, we investigated the impact of sequence divergence. We found evidence of underestimation of the synonymous substitution rate for values as small as 0.5, with a slight increase in false positives for the branch-site test. When dS increases further, underestimation of dS is worse, but false positives decrease. Interestingly, the detection of true positives follows a similar distribution, with a maximum for intermediary values of dS. Thus, high dS is more of a concern for a loss of power (false negatives) than for false positives of the test. Second, we investigated the impact of GC content. We showed that there is no significant difference of false positives between high GC (up to similar to 80%) and low GC (similar to 30%) genes. Moreover, neither shifts of GC content on a specific branch nor major shifts in GC along the gene sequence generate many false positives. Our results confirm that the branch-site is a very conservative test.
Resumo:
Abstract: The expansion of a recovering population - whether re-introduced or spontaneously returning - is shaped by (i) biological (intrinsic) factors such as the land tenure system or dispersal, (ii) the distribution and availability of resources (e.g. prey), (iii) habitat and landscape features, and (iv) human attitudes and activities. In order to develop efficient conservation and recovery strategies, we need to understand all these factors and to predict the potential distribution and explore ways to reach it. An increased number of lynx in the north-western Swiss Alps in the nineties lead to a new controversy about the return of this cat. When the large carnivores were given legal protection in many European countries, most organizations and individuals promoting their protection did not foresee the consequences. Management plans describing how to handle conflicts with large predators are needed to find a balance between "overabundance" and extinction. Wildlife and conservation biologists need to evaluate the various threats confronting populations so that adequate management decisions can be taken. I developed a GIS probability model for the lynx, based on habitat information and radio-telemetry data from the Swiss Jura Mountains, in order to predict the potential distribution of the lynx in this mountain range, which is presently only partly occupied by lynx. Three of the 18 variables tested for each square kilometre describing land use, vegetation, and topography, qualified to predict the probability of lynx presence. The resulting map was evaluated with data from dispersing subadult lynx. Young lynx that were not able to establish home ranges in what was identified as good lynx habitat did not survive their first year of independence, whereas the only one that died in good lynx habitat was illegally killed. Radio-telemetry fixes are often used as input data to calibrate habitat models. Radio-telemetry is the only way to gather accurate and unbiased data on habitat use of elusive larger terrestrial mammals. However, it is time consuming and expensive, and can therefore only be applied in limited areas. Habitat models extrapolated over large areas can in turn be problematic, as habitat characteristics and availability may change from one area to the other. I analysed the predictive power of Ecological Niche Factor Analysis (ENFA) in Switzerland with the lynx as focal species. According to my results, the optimal sampling strategy to predict species distribution in an Alpine area lacking available data would be to pool presence cells from contrasted regions (Jura Mountains, Alps), whereas in regions with a low ecological variance (Jura Mountains), only local presence cells should be used for the calibration of the model. Dispersal influences the dynamics and persistence of populations, the distribution and abundance of species, and gives the communities and ecosystems their characteristic texture in space and time. Between 1988 and 2001, the spatio-temporal behaviour of subadult Eurasian lynx in two re-introduced populations in Switzerland was studied, based on 39 juvenile lynx of which 24 were radio-tagged to understand the factors influencing dispersal. Subadults become independent from their mothers at the age of 8-11 months. No sex bias neither in the dispersal rate nor in the distance moved was detected. Lynx are conservative dispersers, compared to bear and wolf, and settled within or close to known lynx occurrences. Dispersal distances reached in the high lynx density population - shorter than those reported in other Eurasian lynx studies - are limited by habitat restriction hindering connections with neighbouring metapopulations. I postulated that high lynx density would lead to an expansion of the population and validated my predictions with data from the north-western Swiss Alps where about 1995 a strong increase in lynx abundance took place. The general hypothesis that high population density will foster the expansion of the population was not confirmed. This has consequences for the re-introduction and recovery of carnivores in a fragmented landscape. To establish a strong source population in one place might not be an optimal strategy. Rather, population nuclei should be founded in several neighbouring patches. Exchange between established neighbouring subpopulations will later on take place, as adult lynx show a higher propensity to cross barriers than subadults. To estimate the potential population size of the lynx in the Jura Mountains and to assess possible corridors between this population and adjacent areas, I adapted a habitat probability model for lynx distribution in the Jura Mountains with new environmental data and extrapolated it over the entire mountain range. The model predicts a breeding population ranging from 74-101 individuals and from 51-79 individuals when continuous habitat patches < 50 km2 are disregarded. The Jura Mountains could once be part of a metapopulation, as potential corridors exist to the adjoining areas (Alps, Vosges Mountains, and Black Forest). Monitoring of the population size, spatial expansion, and the genetic surveillance in the Jura Mountains must be continued, as the status of the population is still critical. ENFA was used to predict the potential distribution of lynx in the Alps. The resulting model divided the Alps into 37 suitable habitat patches ranging from 50 to 18,711 km2, covering a total area of about 93,600 km2. When using the range of lynx densities found in field studies in Switzerland, the Alps could host a population of 961 to 1,827 residents. The results of the cost-distance analysis revealed that all patches were within the reach of dispersing lynx, as the connection costs were in the range of dispersal cost of radio-tagged subadult lynx moving through unfavorable habitat. Thus, the whole Alps could once be considered as a metapopulation. But experience suggests that only few disperser will cross unsuitable areas and barriers. This low migration rate may seldom allow the spontaneous foundation of new populations in unsettled areas. As an alternative to natural dispersal, artificial transfer of individuals across the barriers should be considered. Wildlife biologists can play a crucial role in developing adaptive management experiments to help managers learning by trial. The case of the lynx in Switzerland is a good example of a fruitful cooperation between wildlife biologists, managers, decision makers and politician in an adaptive management process. This cooperation resulted in a Lynx Management Plan which was implemented in 2000 and updated in 2004 to give the cantons directives on how to handle lynx-related problems. This plan was put into practice e.g. in regard to translocation of lynx into unsettled areas. Résumé: L'expansion d'une population en phase de recolonisation, qu'elle soit issue de réintroductions ou d'un retour naturel dépend 1) de facteurs biologiques tels que le système social et le mode de dispersion, 2) de la distribution et la disponibilité des ressources (proies), 3) de l'habitat et des éléments du paysage, 4) de l'acceptation de l'espèce par la population locale et des activités humaines. Afin de pouvoir développer des stratégies efficaces de conservation et de favoriser la recolonisation, chacun de ces facteurs doit être pris en compte. En plus, la distribution potentielle de l'espèce doit pouvoir être déterminée et enfin, toutes les possibilités pour atteindre les objectifs, examinées. La phase de haute densité que la population de lynx a connue dans les années nonante dans le nord-ouest des Alpes suisses a donné lieu à une controverse assez vive. La protection du lynx dans de nombreux pays européens, promue par différentes organisations, a entraîné des conséquences inattendues; ces dernières montrent que tout plan de gestion doit impérativement indiquer des pistes quant à la manière de gérer les conflits, tout en trouvant un équilibre entre l'extinction et la surabondance de l'espèce. Les biologistes de la conservation et de la faune sauvage doivent pour cela évaluer les différents risques encourus par les populations de lynx, afin de pouvoir rapidement prendre les meilleuresmdécisions de gestion. Un modèle d'habitat pour le lynx, basé sur des caractéristiques de l'habitat et des données radio télémétriques collectées dans la chaîne du Jura, a été élaboré afin de prédire la distribution potentielle dans cette région, qui n'est que partiellement occupée par l'espèce. Trois des 18 variables testées, décrivant pour chaque kilomètre carré l'utilisation du sol, la végétation ainsi que la topographie, ont été retenues pour déterminer la probabilité de présence du lynx. La carte qui en résulte a été comparée aux données télémétriques de lynx subadultes en phase de dispersion. Les jeunes qui n'ont pas pu établir leur domaine vital dans l'habitat favorable prédit par le modèle n'ont pas survécu leur première année d'indépendance alors que le seul individu qui est mort dans l'habitat favorable a été braconné. Les données radio-télémétriques sont souvent utilisées pour l'étalonnage de modèles d'habitat. C'est un des seuls moyens à disposition qui permette de récolter des données non biaisées et précises sur l'occupation de l'habitat par des mammifères terrestres aux moeurs discrètes. Mais ces méthodes de- mandent un important investissement en moyens financiers et en temps et peuvent, de ce fait, n'être appliquées qu'à des zones limitées. Les modèles d'habitat sont ainsi souvent extrapolés à de grandes surfaces malgré le risque d'imprécision, qui résulte des variations des caractéristiques et de la disponibilité de l'habitat d'une zone à l'autre. Le pouvoir de prédiction de l'Analyse Ecologique de la Niche (AEN) dans les zones où les données de présence n'ont pas été prises en compte dans le calibrage du modèle a été analysée dans le cas du lynx en Suisse. D'après les résultats obtenus, la meilleure mé- thode pour prédire la distribution du lynx dans une zone alpine dépourvue d'indices de présence est de combiner des données provenant de régions contrastées (Alpes, Jura). Par contre, seules les données sur la présence locale de l'espèce doivent être utilisées pour les zones présentant une faible variance écologique tel que le Jura. La dispersion influence la dynamique et la stabilité des populations, la distribution et l'abondance des espèces et détermine les caractéristiques spatiales et temporelles des communautés vivantes et des écosystèmes. Entre 1988 et 2001, le comportement spatio-temporel de lynx eurasiens subadultes de deux populations réintroduites en Suisse a été étudié, basé sur le suivi de 39 individus juvéniles dont 24 étaient munis d'un collier émetteur, afin de déterminer les facteurs qui influencent la dispersion. Les subadultes se sont séparés de leur mère à l'âge de 8 à 11 mois. Le sexe n'a pas eu d'influence sur le nombre d'individus ayant dispersés et la distance parcourue au cours de la dispersion. Comparé à l'ours et au loup, le lynx reste très modéré dans ses mouvements de dispersion. Tous les individus ayant dispersés se sont établis à proximité ou dans des zones déjà occupées par des lynx. Les distances parcourues lors de la dispersion ont été plus courtes pour la population en phase de haute densité que celles relevées par les autres études de dispersion du lynx eurasien. Les zones d'habitat peu favorables et les barrières qui interrompent la connectivité entre les populations sont les principales entraves aux déplacements, lors de la dispersion. Dans un premier temps, nous avons fait l'hypothèse que les phases de haute densité favorisaient l'expansion des populations. Mais cette hypothèse a été infirmée par les résultats issus du suivi des lynx réalisé dans le nord-ouest des Alpes, où la population connaissait une phase de haute densité depuis 1995. Ce constat est important pour la conservation d'une population de carnivores dans un habitat fragmenté. Ainsi, instaurer une forte population source à un seul endroit n'est pas forcément la stratégie la plus judicieuse. Il est préférable d'établir des noyaux de populations dans des régions voisines où l'habitat est favorable. Des échanges entre des populations avoisinantes pourront avoir lieu par la suite car les lynx adultes sont plus enclins à franchir les barrières qui entravent leurs déplacements que les individus subadultes. Afin d'estimer la taille de la population de lynx dans le Jura et de déterminer les corridors potentiels entre cette région et les zones avoisinantes, un modèle d'habitat a été utilisé, basé sur un nouveau jeu de variables environnementales et extrapolé à l'ensemble du Jura. Le modèle prédit une population reproductrice de 74 à 101 individus et de 51 à 79 individus lorsque les surfaces d'habitat d'un seul tenant de moins de 50 km2 sont soustraites. Comme des corridors potentiels existent effectivement entre le Jura et les régions avoisinantes (Alpes, Vosges, et Forêt Noire), le Jura pourrait faire partie à l'avenir d'une métapopulation, lorsque les zones avoisinantes seront colonisées par l'espèce. La surveillance de la taille de la population, de son expansion spatiale et de sa structure génétique doit être maintenue car le statut de cette population est encore critique. L'AEN a également été utilisée pour prédire l'habitat favorable du lynx dans les Alpes. Le modèle qui en résulte divise les Alpes en 37 sous-unités d'habitat favorable dont la surface varie de 50 à 18'711 km2, pour une superficie totale de 93'600 km2. En utilisant le spectre des densités observées dans les études radio-télémétriques effectuées en Suisse, les Alpes pourraient accueillir une population de lynx résidents variant de 961 à 1'827 individus. Les résultats des analyses de connectivité montrent que les sous-unités d'habitat favorable se situent à des distances telles que le coût de la dispersion pour l'espèce est admissible. L'ensemble des Alpes pourrait donc un jour former une métapopulation. Mais l'expérience montre que très peu d'individus traverseront des habitats peu favorables et des barrières au cours de leur dispersion. Ce faible taux de migration rendra difficile toute nouvelle implantation de populations dans des zones inoccupées. Une solution alternative existe cependant : transférer artificiellement des individus d'une zone à l'autre. Les biologistes spécialistes de la faune sauvage peuvent jouer un rôle important et complémentaire pour les gestionnaires de la faune, en les aidant à mener des expériences de gestion par essai. Le cas du lynx en Suisse est un bel exemple d'une collaboration fructueuse entre biologistes de la faune sauvage, gestionnaires, organes décisionnaires et politiciens. Cette coopération a permis l'élaboration du Concept Lynx Suisse qui est entré en vigueur en 2000 et remis à jour en 2004. Ce plan donne des directives aux cantons pour appréhender la problématique du lynx. Il y a déjà eu des applications concrètes sur le terrain, notamment par des translocations d'individus dans des zones encore inoccupées.
Resumo:
A wide range of modelling algorithms is used by ecologists, conservation practitioners, and others to predict species ranges from point locality data. Unfortunately, the amount of data available is limited for many taxa and regions, making it essential to quantify the sensitivity of these algorithms to sample size. This is the first study to address this need by rigorously evaluating a broad suite of algorithms with independent presence-absence data from multiple species and regions. We evaluated predictions from 12 algorithms for 46 species (from six different regions of the world) at three sample sizes (100, 30, and 10 records). We used data from natural history collections to run the models, and evaluated the quality of model predictions with area under the receiver operating characteristic curve (AUC). With decreasing sample size, model accuracy decreased and variability increased across species and between models. Novel modelling methods that incorporate both interactions between predictor variables and complex response shapes (i.e. GBM, MARS-INT, BRUTO) performed better than most methods at large sample sizes but not at the smallest sample sizes. Other algorithms were much less sensitive to sample size, including an algorithm based on maximum entropy (MAXENT) that had among the best predictive power across all sample sizes. Relative to other algorithms, a distance metric algorithm (DOMAIN) and a genetic algorithm (OM-GARP) had intermediate performance at the largest sample size and among the best performance at the lowest sample size. No algorithm predicted consistently well with small sample size (n < 30) and this should encourage highly conservative use of predictions based on small sample size and restrict their use to exploratory modelling.