10 resultados para Poultry Science Association.

em Université de Lausanne, Switzerland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most corporate codes of conduct and multi-stakeholder sustainability standards guarantee workers' rights to freedom of association and collective bargaining, but many authors are sceptical about the concrete impact of codes and standards of this kind. In this paper we use Hancher and Moran's (1998) concept of 'regulatory space' to assess the potential of private transnational regulation to support the growth of trade union membership and collective bargaining relationships, drawing on some preliminary case study results from a project on the impact of the International Finance Corporation's (IFC) social conditionality on worker organization and social dialogue. One of the major effects of neoliberal economic and industrial policy has been the routine exclusion of workers' organizations from regulatory processes on the grounds that they introduce inappropriate 'political' motives into what ought to be technical decision-making processes. This, rather than any direct attack on their capacity to take action, is what seems best to explain the global decline in union influence (Cradden 2004; Howell 2007; Howe 2012). The evidence we present in the paper suggests that private labour regulation may under certain conditions contribute to a reversal of this tendency, re-establishing the legitimacy of workers' organizations within regulatory processes and by extension the legitimacy of their use of economic and social power. We argue that guarantees of freedom of association and bargaining rights within private regulation schemes are effective to the extent that they can be used by workers' organizations in support of a claim for access to the regulatory space within which the terms and conditions of the employment relationship are determined. Our case study evidence shows that certain trade unions in East Africa have indeed been able to use IFC and other private regulation schemes as levers to win recognition from employers and to establish collective bargaining relationships. Although they did not attempt to use formal procedures to make a claim for the enforcement of freedom of association rights on behalf of their members, the unions did use enterprises' adherence to private regulation schemes as a normative point of reference in argument and political exchange about worker representation. For these unions, the regulation was a useful addition to the range of arguments that they could deploy as means to justify their demand for recognition by employers. By contrast, the private regulation that helps workers' organizations to win access to regulatory processes does little to ensure that they are able to participate meaningfully, whether in terms of technical capacity or of their ability to mobilize social power as a counterweight to the economic power of employers. To the extent that our East African unions were able to make an impact on terms and conditions of employment via their participation in regulatory space it was solely on the basis of their own capacities and resources and the application of national labour law.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: We previously reported in schizophrenia patients a decreased level of glutathione ([GSH]), the principal non-protein antioxidant and redox regulator, both in cerebrospinal-fluid and prefrontal cortex. To identify possible genetic causation, we studied genes involved in GSH metabolism. Methods: Genotyping: mass spectrometry analysis of polymerase chain reaction (PCR) amplified DNA fragments purified from peripheral blood. Gene expression: real-time PCR of total RNA isolated from fibroblast cultures derived from skin of patients (DSM-IV) and healthy controls (DIGS). Results: Case-control association study of single nucleotide polymorphisms (SNP) from the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) modifier subunit (GCLM) was performed in two populations: Swiss (patients/controls: 40/31) and Danish (349/348). We found a strong association of SNP rs2301022 in GCLM gene (Danish: c2=3.2; P=0.001 after correction for multiple testing). Evidence for GCLM as a risk factor was confirmed in linkage study of NIMH families. Moreover, we observed a decrease in GCLM mRNA levels in patient fibroblasts, consistently with the association study. Interestingly, Dalton and collaborators reported in GCLM knock-out mice an increased feedback inhibition of GCL activity, resulting in 60% decrease of brain [GSH], a situation analogous to patients. These mice also exhibited an increased sensitivity to oxidative stress. Similarly, under oxidative stress conditions, GCL enzymatic activity was also decreased in patient fibroblasts. Conclusions: These results at the genetic and functional levels, combined with observations that GSH deficient models reveal morphological, electrophysiological, and behavioral anomalies analogous to those observed in patients, suggest that GCLM allelic variant is a vulnerability factor for schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decreased fitness and increased fatness are relevant factors for decreased cardiovascular and bone health in children. One way to increase physical activity and hence fitness and to reduce the risk for overweight might be sports club participation (SCP). PURPOSE: To investigate the association of SCP with fatness and fitness in children in general and in those with increased risk for overweight and/or low fitness. METHODS: A cross-sectional study was conducted in a random sample of 502 first- and fifth-grade primary school children. Fitness components were determined by 10 motor tests and body fatness by the sum of four skinfolds. SCP was defined as participation of at least once a week. RESULTS: Two thirds of all children were participating in a sports club. Girls' and boys' participation rate as well as those of overweight children and of children with overweight parents were comparable to their respective normal weight peers. In contrast, children from migrant families (odds ratio = 0.31; 95% confidence interval = 0.20-0.48) and from inactive parents (odds ratio = 0.16; 95% confidence interval = 0.05-0.45) participated significantly less (all P < 0.001). SCP was associated with endurance (0.53 > beta > 0.37, all P < 0.05) and partly with speed, strength, and coordination (0.41 > beta > 0.18, all P < 0.05). In overweight children and in children from overweight parents and migrant families, this association was not found. There was no association between SCP and fatness in any of the groups. CONCLUSIONS: SCP rates were high and were associated with higher levels of most fitness components in children. Participation rates were lower for children of migrant families and children from inactive parents. In addition, the association between SCP and fitness components was not found in overweight children and in children from overweight parents and migrant families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In adipocytes and muscle cells, the GLUT4 glucose transporter isoform is present in intracellular vesicles which continuously recycle between an intracytoplasmic location and the plasma membrane. It is not clear whether the GLUT4-vesicles represent a specific kind of vesicle or resemble typical secretory granules or synaptic-like microvesicles. To approach this question, we expressed GLUT4 in the beta cell line RINm5F and determined its intracellular localization by subcellular fractionation and by immunofluorescence and immunoelectron microscopy. GLUT4 was not found in insulin granules but was associated with a subpopulation of smooth-surface vesicles present in the trans-Golgi region and in vesicular structures adjacent to the plasma membrane. In the trans-Golgi region, GLUT4 did not colocalize with synaptophysin or TGN38. Incubation of the cells with horseradish peroxidase (HRP) led to colocalization of HRP and GLUT4 in some endosomal structures adjacent to the plasma membrane and in occasional trans-Golgi region vesicles. When cells were incubated in the presence of Bafilomycin A, analysis by confocal microscopy revealed GLUT4 in numerous large spots present throughout the cytoplasm, many of which costained for TGN38 and synaptophysin. By immunoelectron microscopy, numerous endosomes were observed which stained strongly for GLUT4. Together our data demonstrate that ectopic expression of GLUT4 in insulinoma cells reveals the presence of a subset of vesicular structures distinct from synaptic-like vesicles and insulin secretory granules. Furthermore, they indicate that GLUT4 constitutively recycles between the plasma membrane and its intracellular location by an endocytic route also taken by TGN38 and synaptophysin.